Math, asked by SIDDHARTHqwerty, 10 months ago

please find the question in the attachment. mathematics class 11​

Attachments:

Answers

Answered by Anonymous
29

\sf{  0 <  {e}^{x} }\\

\sf{\implies f(x) =  \frac{ {e}^{x}  - 1}{ {e}^{x}  + 1} } \\

\sf{\implies \frac{{e}^{x} -1}{ {e}^{x} + 1 }  =  \frac{ {e}^{x}  + 1}{ {e}^{x}  + 1} -  \frac{2}{ {e}^{x}  + 1 }}  \\

 \sf{ \implies \: f(x) = 1 -  \frac{2}{ {e}^{x} + 1 } } \\

→ Adding 1 :-

\sf{ \implies \:  {e}^{x}   + 1>0 + 1 \rightarrow \:  {e}^{x} + 1 > 1 }\\

    \sf{ \implies \: 0 <  \frac{1}{ {e}^{x} + 1 }  < 1}\\

→ Multiplying by 2 :-

 \sf{ \implies \: 0 <  \frac{2}{ {e}^{x} + 1 }  < 2}\\

→ Now multiplying by negative :-

 \sf{ \implies \: -2 <  - \frac{2}{ {e}^{x} + 1 }  < 0}\\

→ Now adding 1 :-

 \sf{ \implies \:  1 - 2 < 1 -  \frac{2}{ {e}^{x} + 1 }  < 1 }\\

 \sf{ \implies \:  -1  < 1 -  \frac{2}{ {e}^{x} + 1 }  < 1 }\\

 \sf{ \implies \:  -1  <  \frac{{e}^{x} - 1 }{ {e}^{x} + 1 }  < 1 }\\

Answer is option D (-1 , 1)

Answered by Anonymous
18

{\underline{\sf{Question}}}

Find range of

\sf{f(x) =\dfrac{ {e}^{x} - 1}{ {e}^{x}  + 1} }

{\underline{\sf{Solution}}}

\sf{f(x) =\dfrac{ {e}^{x}  - 1}{ {e}^{x}  + 1} }

\sf{\implies\:f(x)=\dfrac{{e}^{x}+1-2}{ {e}^{x} + 1 } }

 \sf{ \implies\:f(x) = 1-\dfrac{2}{ {e}^{x} + 1 }}

Now apply the limits .

\sf\lim_{x\to+\infty}1-\dfrac{2}{\infty}=1

\sf\lim_{x\to-\infty}1-\dfrac{2}{0+1}=-1

Therefore ,Range of \sf{f(x) =\dfrac{ {e}^{x} - 1}{ {e}^{x}  + 1}} is (-1,1)

Correct option D) (-1 , 1)

\rule{200}2

Graph of Given Function :

\sf{f(x) =  \dfrac{ {e}^{x} - 1}{ {e}^{x}  + 1} }

\sf{f(-x) =\dfrac{ {e}^{-x} - 1}{ {e}^{-x}  + 1}=-f(x)}

Thus, f(x) is odd function

We know that the graph of odd function will be symmetric about origin.

we have, f (0) = 0

and range =(-1,1)

Note :

Refer to the attachment for graph .

Attachments:
Similar questions