Math, asked by devyani72, 1 year ago

Please find the value of x ​

Attachments:

Answers

Answered by kishlay0123
1

Answer:

hope it would help.

mark as brainliest.

Attachments:

devyani72: Sorry but the answer is incorrect
devyani72: It should be p²/q²
Answered by AbhijithPrakash
4

Answer:

\dfrac{x}{-\left(\dfrac{ap^4+bq^4}{q^2}\right)+b\left(p^2+q^2\right)}=\dfrac{1}{bq^2-ap^2}\quad :\quad x=\dfrac{p^2}{q^2};\quad \:q\ne \:0

Step-by-step explanation:

\dfrac{x}{-\left(\dfrac{ap^4+bq^4}{q^2}\right)+b\left(p^2+q^2\right)}=\dfrac{1}{bq^2-ap^2}

\gray{\mathrm{Multiply\:both\:sides\:by\:}bp^2q^2-ap^4}

\dfrac{x\left(bp^2q^2-ap^4\right)}{-\dfrac{ap^4+bq^4}{q^2}+b\left(p^2+q^2\right)}=\dfrac{1\cdot \left(bp^2q^2-ap^4\right)}{bq^2-ap^2}

\black{\mathrm{Simplify}}

\dfrac{x\left(bp^2q^2-ap^4\right)}{-\dfrac{ap^4+bq^4}{q^2}+b\left(p^2+q^2\right)}=\dfrac{1\cdot \left(bp^2q^2-ap^4\right)}{bq^2-ap^2}

\black{\mathrm{Simplify\:}\dfrac{x\left(bp^2q^2-ap^4\right)}{-\dfrac{ap^4+bq^4}{q^2}+b\left(p^2+q^2\right)}}

\dfrac{x\left(bp^2q^2-ap^4\right)}{-\dfrac{ap^4+bq^4}{q^2}+b\left(p^2+q^2\right)}

\gray{\mathrm{Join}\:-\dfrac{ap^4+bq^4}{q^2}+b\left(p^2+q^2\right):\quad \dfrac{bp^2q^2-ap^4}{q^2}}

=\dfrac{x\left(-ap^4+bp^2q^2\right)}{\dfrac{bp^2q^2-ap^4}{q^2}}

\gray{\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{a}{\dfrac{b}{c}}=\dfrac{a\cdot \:c}{b}}

=\dfrac{x\left(bp^2q^2-ap^4\right)q^2}{bp^2q^2-ap^4}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:bp^2q^2-ap^4}

=xq^2

\black{\mathrm{Simplify\:}\dfrac{1\cdot \left(bp^2q^2-ap^4\right)}{bq^2-ap^2}}

\dfrac{1\cdot \left(bp^2q^2-ap^4\right)}{bq^2-ap^2}

\gray{1\cdot \left(bp^2q^2-ap^4\right)=bp^2q^2-ap^4}

=\dfrac{bp^2q^2-ap^4}{bq^2-ap^2}

\gray{\mathrm{Factor}\:bp^2q^2-ap^4:\quad p^2\left(bq^2-ap^2\right)}

=\dfrac{p^2\left(bq^2-ap^2\right)}{bq^2-ap^2}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:bq^2-ap^2}

=p^2

xq^2=p^2

\gray{\mathrm{Divide\:both\:sides\:by\:}q^2;\quad \:q\ne \:0}

\dfrac{xq^2}{q^2}=\dfrac{p^2}{q^2};\quad \:q\ne \:0

\gray{\mathrm{Simplify}}

x=\dfrac{p^2}{q^2};\quad \:q\ne \:0

\blue{\mathrm{Plotting:}}

\dfrac{x}{-\left(\dfrac{ap^4+bq^4}{q^2}\right)+b\left(p^2+q^2\right)}=\dfrac{1}{bq^2-ap^2}\quad \mathrm{assuming}\quad \:a=1\quad \:p=2\quad \:b=3\quad \:q=4

Attachments:

AbhijithPrakash: ^_^
Similar questions