Math, asked by bhattacharjeerajee27, 2 months ago

please find these by using remainder method and verify by actual division​

Attachments:

Answers

Answered by Yugant1913
19

 \rm \: We  \: have \: \green{  ƒ(x) = 3 {x}^{4} +2 {x}^{3}  -  \frac{ {x}^{2} }{3}  -  \frac{x}{9}  +  \frac{2}{27} , g(x) = x+ \frac{2}{3}}\\

Therefore, by remainder theorem when f(x) is divided by g(x) = x- (-2/3), the remainder is equal to f(-2/3)

 \boxed{ \underline{ \underline{ \rm \huge \green{Solution : -  }}}}

 \sf \: Now \: \green{ ƒ(x) = 3 {x}^{4}  +  {2x}^{3}  +  \frac{  {x}^{2} }{3}  -  \frac{x}{9}  +  \frac{2}{27} } \\

 \tt \implies  \green{ ƒ \bigg( -  \frac{2}{3}  \bigg) }= 3x \bigg(   \frac{ - 2}{3}  { \bigg)}^{4}  + 2 { \bigg(   \frac{ - 2}{3}  \bigg)}^{3}  -    \frac{(   \frac{ - 2}{3} {)}^{2}  }{3}    -  \frac{(   \frac{ - 2}{3}) }{9}  +  \frac{2}{27}  \\

 \implies \:  \cancel3 \times  \frac{16}{ \cancel{81}}   + 2 \times  \frac{ - 8}{27}  -  \frac{4}{9 \times  3}  -  \bigg( \frac{ - 2}{3 \times 9}  \bigg) +  \frac{2}{27 }  \\

 \implies \:  \frac{16}{27}  -  \frac{16}{27}  -  \frac{4}{27}  +  \frac{2}{27}  +  \frac{2}{27}  \\

 \implies \:  \:  \:  \frac{16 - 16 - 4 + 2 + 2}{27}  \\

 \implies \:  \:  \frac{0}{27}  \\

  \boxed{\underline{ \implies \: 0}}

Hence, required remainder is 0

Similar questions