Math, asked by CUTEchhori, 13 hours ago

Please find value of
log√32​

Answers

Answered by anindyaadhikari13
7

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given logarithm.

 \rm =\log( \sqrt{32})

 \rm =\log( \sqrt{ {2}^{5} })

 \rm =\log({2}^{5})^{ \frac{1}{2} }

 \rm =\log(2)^{ \frac{5 \times 1}{2} }

Now, we know that:

 \rm = \log_{x}( {a}^{m} )  = m\log_{x}(a)

Therefore, we get:

 \rm = \dfrac{5}{2} \log(2)

We know that log(2) ≈ 0.3. Therefore:

 \rm = \dfrac{5}{2} \times 0.3

 \rm = \dfrac{1.5}{2}

 \rm =0.75

Therefore:

 \rm \longrightarrow\log( \sqrt{32}) = 0.75

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions