Math, asked by VedikaTherokar, 2 months ago

please find x and y ​

Attachments:

Answers

Answered by sohanislam62
0

Answer:

X1 and x2 please make brainly answer

Answered by BrainlyTwinklingstar
2

Answer

\sf \dashrightarrow \dfrac{5}{x - 1} + \dfrac{1}{y - 2} = 2 \: \: --- (i)

\sf \dashrightarrow \dfrac{6}{x - 1} - \dfrac{3}{y - 2} = 1 \: \: --- (ii)

Let \sf \dfrac{1}{x - 1} be u.

Let \sf \dfrac{1}{y - 2} be v.

So, the equations become

\sf \dashrightarrow 5u + 1v = 2

\sf \dashrightarrow 6u - 3v = 1

First, find the values of u and v by substitution method.

\sf \dashrightarrow 5u + 1v = 2

\sf \dashrightarrow 5u = 2 - 1v

\sf \dashrightarrow u = \dfrac{2 - 1v}{5}

Now, let's find the value of v by second equation.

\sf \dashrightarrow 6u - 3v = 1

\sf \dashrightarrow 6 \bigg( \dfrac{2 - 1v}{5} \bigg) - 3v = 1

\sf \dashrightarrow \dfrac{12 - 6v}{5} - 3v = 1

\sf \dashrightarrow \dfrac{12 - 6v - 15v}{5} = 1

\sf \dashrightarrow \dfrac{12 - 21v}{5} = 1

\sf \dashrightarrow 12 - 21v = 1 \times 5

\sf \dashrightarrow 12 - 21v = 5

\sf \dashrightarrow -21v = 5 - 12

\sf \dashrightarrow -21v = -7

\sf \dashrightarrow v = \dfrac{-7}{-21}

\sf \dashrightarrow v = \dfrac{1}{3}

Now, let's find the value of u by first equation.

\sf \dashrightarrow 5u + 1v = 2

\sf \dashrightarrow 5u + 1 \bigg( \dfrac{1}{3} \bigg) = 2

\sf \dashrightarrow 5u + \dfrac{1}{3} = 2

\sf \dashrightarrow 5u = 2 - \dfrac{1}{3}

\sf \dashrightarrow 5u = \dfrac{6 - 1}{3}

\sf \dashrightarrow 5u = \dfrac{5}{3}

\sf \dashrightarrow u = \dfrac{\dfrac{5}{3}}{5}

\sf \dashrightarrow u = \dfrac{5}{3} \times \dfrac{1}{5}

\sf \dashrightarrow u = \dfrac{5}{15}

\sf \dashrightarrow u = \dfrac{1}{3}

We know that,

\sf \dashrightarrow \dfrac{1}{x - 1} = u

\sf \dashrightarrow \dfrac{1}{x - 1} = \dfrac{1}{3}

\sf \dashrightarrow 1 \times 3 = 1 (x - 1)

\sf \dashrightarrow 3 = 1x - 1

\sf \dashrightarrow 1x = 3 + 1

\sf \dashrightarrow 1x = 4

\sf \dashrightarrow x = 4

Now, let's find the value of y.

\sf \dashrightarrow \dfrac{1}{y - 2} = v

\sf \dashrightarrow \dfrac{1}{y - 2} = \dfrac{1}{3}

\sf \dashrightarrow 1 \times 3 = 1 (y - 2)

\sf \dashrightarrow 3 = 1y - 2

\sf \dashrightarrow 1y = 3 + 2

\sf \dashrightarrow 1y = 5

\sf \dashrightarrow y = 5

Hence, the values of x and y are 4 and 5 respectively.

Similar questions