Please finish these sums
Answers
from 1st attachment
Question 19
\frac{ 7+3 \sqrt{ 5 } }{ 3+ \sqrt{ 5 } } + \frac{ 7-3 \sqrt{ 5 } }{ 3- \sqrt{ 5 } } =a+ \sqrt{ 5 } b \\ \\\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\frac{7-3\sqrt{5}}{3-\sqrt{5}}=a+\sqrt{5}b \\ \\ \frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}+\frac{7-3\sqrt{5}}{3-\sqrt{5}}=a+\sqrt{5}b\\ \\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{9-5}+\frac{7-3\sqrt{5}}{3-\sqrt{5}}=a+\sqrt{5}b\\ \\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}+\frac{7-3\sqrt{5}}{3-\sqrt{5}}=a+\sqrt{5}b\\ \\ \frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}+\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=a+\sqrt{5}b\\ \\ \frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}+\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}=a+\sqrt{5}b\\ \\ \frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}+\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{9-5}=a+\sqrt{5}b\\ \\ \frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}+\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}=a+\sqrt{5}b\\ \\\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}=a+\sqrt{5}b\\ \\\frac{21-7\sqrt{5}+9\sqrt{5}-15+21+7\sqrt{5}-9\sqrt{5}-15}{4}=a+\sqrt{5}b \\ \\\frac{12}{4}=a+\sqrt{5}b 3 \\ =a+\sqrt{5}b a+\sqrt{5}b=3\\ \\ a=3-\sqrt{5}b\\ \\ a=-\sqrt{5}b+3