Math, asked by nak3, 1 year ago

please!! friends answer this question

Attachments:

Answers

Answered by Anonymous
3
Hey dear!!


Here is yr answer......

 given \\ f(x) =  {3x}^{4}  +  {2x}^{3}  -  \frac{ {x}^{2} }{3}  -  \frac{x}{9}  +  \frac{2}{27}  \\  \\ g(x) = x +  \frac{2}{3 }  \\ x +  \frac{2}{3}  = 0 \\ x =  -  \frac{2}{3}  \\  \\  f(  - \frac{2}{3} ) = 3( -  \frac{2}{3} )^{4}  + 2(  - \frac{2}{3} )^{3}  -  \frac{ { (- 2})^{2} }{3}  -  (\frac{ - 2}{9} ) +  \frac{2}{27}  \\  \\  f( -  \frac{2}{3} ) = 3( \frac{16}{81} ) + 2( -  \frac{8}{27} ) -  \frac{4}{3}  +  \frac{2}{9}  +  \frac{2}{27}  \\  \\  f( -  \frac{2}{3} ) =  \frac{16}{27}   -  \frac{16}{27}  -  \frac{4}{3}  +  \frac{2}{9}  +  \frac{2}{27}  \\  \\ f( -  \frac{2}{3} ) =  \frac{16 - 16 - 36 + 6 + 2}{27}  \\  \\ f( -  \frac{2}{3} ) =  \frac{24 -  52}{27}  \\  \\ f( -  \frac{2}{3} ) =  \frac{ - 28}{27}  \\  \\

So, the remainder is -28/27.


Hope it hlpz....


nak3: no, the remainder will be 0
Anonymous: No
Anonymous: wait
Anonymous: i 'll checj
Anonymous: check
Anonymous: it is correct
Anonymous: you should do this by division !! and g(x) ≠ 0 ‼
Anonymous: ohk
Answered by elma1
0
Nshdgsjnsjsjahshdbdjsksoalpapa
Similar questions