Math, asked by XxlovelyaditixX, 8 months ago

please give a answer

Attachments:

Answers

Answered by adityachoudhary2956
61

\huge\boxed{\mathcal{\pink{\fcolorbox{red}{purple}{ Solution }}}}

tan ( A + B ) = 3 and tan ( A - B ) = 1/3

tan ( A + B ) = tan 60°

tan ( A - B ) = tan 30°

{ A + B = 60 ° --------- i

{ A - B = 30 ° ---------ii

\underline\bold\green{From\:eq\:(i)\:and\: (ii)}

A + B = 60 °

A - B = 30°

2A = 90 °

A = 45 °

\underline\bold\green{Putting\:The\: Value\:eq-(ii) }

A - B = 30 °

45 - B = 30 °

- B = 30 ° - 45 °

- B = - 15

B = 15

Tha value Of A = 45 ° & B = 15

Answered by kaushik05
5

Given:

• tan (A+B) =√3

• tan(A-B) = 1/√3

To find :

• A and B :

Solution:

 \implies \tan \: (A+B) =  \sqrt{3}  \\  \\  \implies \:  \tan \: (A+B) =  \tan \: 60 \degree \\  \\  \implies \: (A+B) = 60 \degree \:   -  -  -  -  - (1)

and

 \implies \:  \tan \: (A - B) =  \frac{1}{ \sqrt{3} }  \\  \\  \implies \tan \: (A - B) =  \tan \: 30 \degree \\  \\  \implies \: (A - B) = 30 \degree \:  -  -  -  -  - (2)

• Add both equation 1 and 2 we get ,

=>2A = 90°

=> A= 90°/2

=> A = 45 °

now put the value of A in equation 1 we get ,

=> A+B = 60°

=> B= 60°-45°

=> B= 15°

Hence, the value of A is 45 ° and B is 15°

Similar questions