Math, asked by hkvn, 1 year ago

Please give a logical answer
-Thanks

Attachments:

Answers

Answered by TPS
4
Displacement is AC.
ab =  \sqrt{5}  \: m \\ bc = 3 \: m \\ cd = 2 \: m \\  \\ using \: pythgoras \: theorem \: in \: triangle \: bcd \\  \\  {bd}^{2}  =  {bc}^{2}  -  {cd}^{2}  \\ bd =  \sqrt{{bc}^{2}  -  {cd}^{2}}  \\  bd =  \sqrt{ {3}^{2} -  {2}^{2}  }  \\ bd =  \sqrt{9 - 4}  \\ bd =  \sqrt{5}  \: m

ad  = ab + bd =  \sqrt{5}  +  \sqrt{5}  = 2 \sqrt{5}  \: m

in \: triangle \: acd \\  \\  {ac}^{2} =  {ad}^{2}   +  {dc}^{2}  \\ ac =  \sqrt{{ad}^{2}   +  {dc}^{2}}  \\ ac =  \sqrt{ {(2 \sqrt{5}) }^{2} + {(2)}^{2}   }  \\ ac =  \sqrt{20 + 4}  \\ ac =  \sqrt{24}  \\ ac = 2 \sqrt{6}  \: m

Displacement is AC = 2√6 m

hkvn: Thanks a bunch
TPS: :-)
hkvn: :-D
hkvn: Happy navratri...!!!
Answered by Anonymous
0
AB =✓5 m
BC =3m
CD =2m

In ∆BCD, using Pythagoras theorem

{BC}^{2} = {CD}^{2} + {BD}^{2} \\ {3}^{2} = {2}^{2} + {BD}^{2} \\ {BD}^{2} = 9 - 4 \\ BD = \sqrt{5} m
So AD = ✓5+✓5=2✓5
In ∆ACD, using Pythagoras theorem

{AC}^{2} = {CD}^{2} + {AD}^{2} \\ {AC}^{2} = {2}^{2} + {2✓5}^{2} \\ {AC}^{2} = 4+20\\ AC= \sqrt{24} m\\AC=2✓6m
Similar questions