Math, asked by manoranjan271284, 9 months ago

please give answer fast​

Attachments:

Answers

Answered by aakashkumar44
1

Step-by-step explanation:

The given equation is |x+y/x-y| is not equal to |x-y/x+y|

x =9/5 and y = 5/3

putting the value in the above equation

-9/5+5/3 /-9/5- 5/3. = -27+25/15 / -27-25/15 here 15 of denominator will get cut

-2/-52 = 2/52 for LHS

for rhs

the answer will be 52/2 as LHS is just a reciprocal of RHS

so we can say that LHS is not equal to RHS

hence proved

hope it will be helpful!!!!!!

Answered by prince5132
12

GIVEN :-

 \\  \red\bigstar \displaystyle \tt \: \bigg  | \dfrac{x + y}{x - y} \bigg |  \neq  \bigg| \frac{x - y}{x + y}  \bigg|  \\

TO PROVE :-

 \\  \red\bigstar \displaystyle \tt \: \bigg  | \dfrac{x + y}{x - y} \bigg |  \neq  \bigg| \frac{x - y}{x + y}  \bigg|  \\

SOLUTION :-

 \\  \red\bigstar \displaystyle \tt \: \bigg  | \dfrac{x + y}{x - y} \bigg |  \neq  \bigg| \frac{x - y}{x + y}  \bigg|  \\   \\

\implies \: \displaystyle \tt \:  \Bigg| \dfrac{ \dfrac{ - 9}{5}  +  \dfrac{5}{3} }{ \dfrac{ - 9}{5}   -  \dfrac{5}{3} }  \Bigg|   \neq \: \Bigg| \dfrac{ \dfrac{ - 9}{5}   -  \dfrac{5}{3} }{ \dfrac{ - 9}{5}    +  \dfrac{5}{3} }  \Bigg|  \\ \\

\implies \: \displaystyle \tt \: \Bigg  |  \dfrac{ \dfrac{ - 27 +25 }{15} }{ \dfrac{ - 27 - 25}{15} } \bigg |  \neq \: \Bigg  |  \dfrac{ \dfrac{ - 27  - 25 }{15} }{ \dfrac{ - 27  +  25}{15} } \Bigg |  \\  \\

\implies \: \displaystyle \tt \: \Bigg  |  \dfrac{ \dfrac{ - 2}{15} }{  \dfrac{ - 52}{15} }  \Bigg |  \neq\Bigg  |  \dfrac{ \dfrac{ - 52}{15} }{  \dfrac{ - 2}{15} }  \Bigg |   \\  \\

\implies \: \displaystyle \tt \: \bigg  |  \dfrac{ - 2}{15}  \times  \dfrac{ - 15}{52}  \bigg |  \neq \:  \bigg  |  \dfrac{ - 52}{15}  \times  \dfrac{ - 15}{2}  \bigg |  \\  \\

\implies \: \displaystyle \tt \: \bigg  |  \dfrac{ 2}{ \cancel{15}}  \times  \dfrac{  \cancel{15}}{52}  \bigg |  \neq \:  \bigg  |  \dfrac{ 52}{ \cancel{15}}  \times  \dfrac{  \cancel{15}}{2}  \bigg |  \\  \\

\implies \: \displaystyle \tt \: \bigg  |  \dfrac{2}{52}  \bigg |  \neq \: \bigg  |  \dfrac{52}{2}  \bigg |  \\  \\

\implies \: \displaystyle \tt \: \bigg  |  \frac{1}{26}  \bigg |  \neq \: \bigg  |  \frac{26}{1}  \bigg |   \\  \\

\implies \: \displaystyle \tt \:  \dfrac{1}{26}  \neq \: 26 \\  \\

 \therefore \displaystyle \tt \: \bigg  | \dfrac{x + y}{x - y} \bigg |  \neq  \bigg| \frac{x - y}{x + y}  \bigg|  \\   \\

HENCE PROVED

Similar questions