please give answer fast........
Attachments:
Answers
Answered by
3
Given,
x = 1 / ( 2 - √3 )
To rationalize the denominator we shall multiply numerator and denominator of R.H.S by ( 2 + √3 ).
⇒ x = 1 ( 2 + √3 ) ÷ ( 2 - √3 ) ( 2 + √3 )
⇒ x = ( 2 + √3 ) ÷ { 2² - ( √3 )² }
⇒ x = ( 2 + √3 ) ÷ ( 4 - 3 )
∴ x = ( 2 + √3 ).
Now,
⇒ x³ = ( 2 + √3 )³
⇒ x³ = 2³ + ( √3 )³ + 3 × ( 2 ) × ( √3 )² + 3 × ( 2 )² × ( √3 )
⇒ x³ = 8 + 3√3 + 18 + 12√3
⇒ x³ = 26 + 15√3.
Now,
⇒ x² = ( 2 + √3 )²
⇒ x² = 2² + ( √3 )² + 2 × 2 × √3
⇒ x² = 4 + 3 + 4√3
⇒ x² = 7 + 4√3
Now,
= x³ - 2 x² - 7 x + 5
By substituting the values of x³ , x² and x.
= ( 26 + 15√3 ) - 2 ( 7 + 4√3 ) - 7 ( 2 + √3 ) + 5
= 26 + 15√3 - 14 - 8√3 - 14 - 7√3 + 5
= 26 - 14 - 14 + 5 + 15√3 - 8√3 - 7√3
= 31 - 28 + 15√3 - 15√3
= 3.
The final answer is 3.
▬▬▬▬▬▬▬▬▬▬▬
Given ,
√2 = 1.414 and √6 = 2.449
Now,
= 1 ÷ ( √3 - √2 - 1 )
= 1 ÷ { ( √3 - √2 ) - 1 }
To rationalize the denominator we shall multiply the numerator and denominator by { ( √3 - √2 ) + 1 }.
= 1 { ( √3 - √2 ) + 1 } ÷ { ( √3 - √2 ) - 1 } { ( √3 - √2 ) + 1 }
= ( √3 - √2 + 1 ) ÷ { ( √3 - √2 )² - 1² }
= ( √3 - √2 + 1 ) ÷ { (√3)² + ( √2)² - 2 × √3 × √2 - 1 }
= ( √3 - √2 + 1 ) ÷ ( 3 + 2 - 1 - 2√6 )
= ( √3 - √2 + 1 ) ÷ ( 5 - 1 - 2√6 )
= ( √3 - √2 + 1 ) ÷ ( 4 - 2√6 )
To rationalize the denominator we shall multiply numerator and denominator by ( 4 + 2√6 ).
= ( √3 - √2 + 1 ) ( 4 + 2√6 ) ÷ ( 4 - 2√6 ) ( 4 + 2√6 )
= ( 4√3 + 2√18 - 4√2 - 2√12 + 4 + 2√6 ) ÷ { (4)² - (2√6)² }
= ( 4√3 + 6√2 - 4√2 - 4√3 + 4 + 2√6 ) ÷ ( 16 - 24 )
= ( 2√2 + 2√6 + 4 ) ÷ ( -8 )
= 2 ( √2 + √6 + 2 ) ÷ ( - 8 )
= ( √2 + √6 + 2 ) ÷ ( - 4 )
= - ( √2 + √6 + 2 )÷ 4
By putting the value of √2 and √6.
= - ( 1.414 + 2.449 + 2 ) ÷ 4
= - ( 5.863 ) ÷ 4
= -1.465.
The final answer is ( -1.465 ).
x = 1 / ( 2 - √3 )
To rationalize the denominator we shall multiply numerator and denominator of R.H.S by ( 2 + √3 ).
⇒ x = 1 ( 2 + √3 ) ÷ ( 2 - √3 ) ( 2 + √3 )
⇒ x = ( 2 + √3 ) ÷ { 2² - ( √3 )² }
⇒ x = ( 2 + √3 ) ÷ ( 4 - 3 )
∴ x = ( 2 + √3 ).
Now,
⇒ x³ = ( 2 + √3 )³
⇒ x³ = 2³ + ( √3 )³ + 3 × ( 2 ) × ( √3 )² + 3 × ( 2 )² × ( √3 )
⇒ x³ = 8 + 3√3 + 18 + 12√3
⇒ x³ = 26 + 15√3.
Now,
⇒ x² = ( 2 + √3 )²
⇒ x² = 2² + ( √3 )² + 2 × 2 × √3
⇒ x² = 4 + 3 + 4√3
⇒ x² = 7 + 4√3
Now,
= x³ - 2 x² - 7 x + 5
By substituting the values of x³ , x² and x.
= ( 26 + 15√3 ) - 2 ( 7 + 4√3 ) - 7 ( 2 + √3 ) + 5
= 26 + 15√3 - 14 - 8√3 - 14 - 7√3 + 5
= 26 - 14 - 14 + 5 + 15√3 - 8√3 - 7√3
= 31 - 28 + 15√3 - 15√3
= 3.
The final answer is 3.
▬▬▬▬▬▬▬▬▬▬▬
Given ,
√2 = 1.414 and √6 = 2.449
Now,
= 1 ÷ ( √3 - √2 - 1 )
= 1 ÷ { ( √3 - √2 ) - 1 }
To rationalize the denominator we shall multiply the numerator and denominator by { ( √3 - √2 ) + 1 }.
= 1 { ( √3 - √2 ) + 1 } ÷ { ( √3 - √2 ) - 1 } { ( √3 - √2 ) + 1 }
= ( √3 - √2 + 1 ) ÷ { ( √3 - √2 )² - 1² }
= ( √3 - √2 + 1 ) ÷ { (√3)² + ( √2)² - 2 × √3 × √2 - 1 }
= ( √3 - √2 + 1 ) ÷ ( 3 + 2 - 1 - 2√6 )
= ( √3 - √2 + 1 ) ÷ ( 5 - 1 - 2√6 )
= ( √3 - √2 + 1 ) ÷ ( 4 - 2√6 )
To rationalize the denominator we shall multiply numerator and denominator by ( 4 + 2√6 ).
= ( √3 - √2 + 1 ) ( 4 + 2√6 ) ÷ ( 4 - 2√6 ) ( 4 + 2√6 )
= ( 4√3 + 2√18 - 4√2 - 2√12 + 4 + 2√6 ) ÷ { (4)² - (2√6)² }
= ( 4√3 + 6√2 - 4√2 - 4√3 + 4 + 2√6 ) ÷ ( 16 - 24 )
= ( 2√2 + 2√6 + 4 ) ÷ ( -8 )
= 2 ( √2 + √6 + 2 ) ÷ ( - 8 )
= ( √2 + √6 + 2 ) ÷ ( - 4 )
= - ( √2 + √6 + 2 )÷ 4
By putting the value of √2 and √6.
= - ( 1.414 + 2.449 + 2 ) ÷ 4
= - ( 5.863 ) ÷ 4
= -1.465.
The final answer is ( -1.465 ).
pooja3323:
sorryyyyyy
Similar questions