Physics, asked by brilliantguy99, 1 month ago

Please give answer fast

Attachments:

Answers

Answered by Anonymous
1

 \large \underline \bold{Solution}:-

\rm{\: \: \: \: \: \: \: \: \int_{-1}^{2} \: x^{2} \: dx}

 \small \underline \bold{We \: know}:-

\rm{\: \: \: \: \: \large \boxed{\int x^{n} dx = \dfrac{x^{n+1}}{n+1}}}

\rm{So}

\rm{\: \: \: \: \bigg(\dfrac{x^{2+1}}{2+1}\bigg)_{-1}^{2}}

\rm{\: \: \: \: \: \bigg(\dfrac{x^{3}}{3}\bigg)_{-1}^{2}}

\rm{\: \: \: \: \: \: \dfrac{1}{3} (x^{3})_{-1}^{2}}

\rm{\: \: \: \: \: \dfrac{1}{3} \bigg(2^{3} - (-1)^{3}\bigg)}

\rm{\: \: \: \: \: \dfrac{1}{3} \bigg(8 - (-1)\bigg)}

\rm{\: \: \: \: \: \dfrac{1}{3} \bigg(8 + 1\bigg)}

\rm{\: \: \: \: \: \dfrac{1}{\cancel{3}}\times \cancel{9}}

\rm{\: \: \: \: \: \: \large \boxed{3}}

Similar questions