please give answer of this question fast
Q. 18
Attachments:
Answers
Answered by
3
To prove- AC²+ AB²= 2AD+1/2BC²
Proof- let the distance between E and D be x, and A and E be y
⇒AD²=x²+y²
AC²= AE²+EC²=y²+[A/2 +x]²___________1
AB²=AE²+EB²=y²+[A/2-x]²_____________2
_2+_1⇒AB²+AC²=2[x²+y²]+ A²/2
⇒AC²+ AB²= 2AD+1/2BC²
Hence Proved
Hope this helped you Bhumika!!!
bhumikapatil:
thanks
Answered by
3
In right ∆AEC,
AC^2 = AE^2 + CE^2 [By Pythagoras theorem] → (1)
In right ΔAED,
AD^2 = AE^2 + DE^2 [By Pythagoras theorem]
⇒ AE^2 = AD^2 – DE^2
Hence equation (1) becomes,
AC^2 = [AD^2 – DE^2 ] + CE^2
= AD^2 – DE^2 + (DC + DE)^2
= AD2 – DE^2 + DC^2 + 2 (DC)(DE) + DE^2
= AD^2 + DC^2 + 2 (DC)(DE)
= AD2 + (BC/2)^2 + 2 (BC/2)(DE)
∴ AC^2 = AD^2 + (BC/2)^2 + (BC)(DE)
AC^2 = AE^2 + CE^2 [By Pythagoras theorem] → (1)
In right ΔAED,
AD^2 = AE^2 + DE^2 [By Pythagoras theorem]
⇒ AE^2 = AD^2 – DE^2
Hence equation (1) becomes,
AC^2 = [AD^2 – DE^2 ] + CE^2
= AD^2 – DE^2 + (DC + DE)^2
= AD2 – DE^2 + DC^2 + 2 (DC)(DE) + DE^2
= AD^2 + DC^2 + 2 (DC)(DE)
= AD2 + (BC/2)^2 + 2 (BC/2)(DE)
∴ AC^2 = AD^2 + (BC/2)^2 + (BC)(DE)
Attachments:
Similar questions