Math, asked by mstart925, 6 hours ago

please give answer please​

Attachments:

Answers

Answered by nitimahajan14
0

Step-by-step explanation:

here is the solution of your problem

Attachments:
Answered by mathdude500
5

Given Question :-

Differentiate using first principle sqrt(x).

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) =  \sqrt{x}

So,

\rm :\longmapsto\:f(x + h) =  \sqrt{x + h}

Using Definition of First Principle, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \sf  \frac{f(x + h) - f(x)}{h}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \sf  \frac{ \sqrt{x + h} -  \sqrt{x}  }{h}

On rationalizing the numerator, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \sf  \frac{ \sqrt{x + h} -  \sqrt{x}  }{h}  \times \dfrac{ \sqrt{x + h}  +  \sqrt{x} }{ \sqrt{x + h}  -  \sqrt{x} }

We know,

 \boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this,

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \sf  \frac{(x + h) - x}{h[ \sqrt{x + h}  +  \sqrt{x}] }

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \sf  \frac{x + h - x}{h[ \sqrt{x + h}  +  \sqrt{x}] }

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \sf  \frac{ h}{h[ \sqrt{x + h}  +  \sqrt{x}] }

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \sf  \frac{1}{[ \sqrt{x + h}  +  \sqrt{x}] }

\rm :\longmapsto\:f'(x) = \dfrac{1}{\sqrt{x + 0}  +  \sqrt{x}}

\rm :\longmapsto\:f'(x) = \dfrac{1}{\sqrt{x}  +  \sqrt{x}}

\rm :\longmapsto\:f'(x) = \dfrac{1}{ \:  \: 2\sqrt{x} \:  \: }

Hence,

 \boxed{ \qquad \bf{ \: \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} } \qquad}}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions