Math, asked by mstart925, 1 month ago

please give answer please don't spam I will report who give right answer I mark brainlist​

Attachments:

Answers

Answered by GauthmathMagnus
1

Answer:

Step-by-step explanation:

use quotient rule

2cosx(-sin2x)-cos2x(-sinx) / (cos^2x)

=(-2cosxsin2x+sinxcos2x) / cos^2x

Answered by mathdude500
3

\large\underline{ \sf{Given \:Question - }}

\rm :\longmapsto\:Find \: \dfrac{d}{dx}\bigg[\dfrac{cos2x}{cosx} \bigg] \:

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:y = \dfrac{cos2x}{cosx}

We know,

 \boxed{ \bf{ \: cos2x = 2 {cos}^{2}x - 1}}

So, using this, we get

\rm :\longmapsto\:y = \dfrac{ {2cos}^{2}x - 1}{cosx}

\rm :\longmapsto\:y = \dfrac{ {2cos}^{2}x}{cosx}  - \dfrac{1}{cosx}

\rm :\longmapsto\:y = 2cosx - secx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}( 2cosx - secx)

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v}}

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}2cosx - \dfrac{d}{dx}secx

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)}}

and

 \boxed{ \bf{ \: \dfrac{d}{dx}secx = secx \: tanx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2\dfrac{d}{dx}cosx \:  -  \: secx \: tanx

\bf :\longmapsto\:\dfrac{dy}{dx} =  - 2 \: sinx \:  -  \: secx \: tanx

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions