Math, asked by CharanHarshith2010, 1 day ago

Please give answer to my question.

Put your talent out.​

Attachments:

Answers

Answered by мααɴѕí
2

Step-by-step explanation:

Given information: AD is median, AB=AC, m∠B=35°.

In triangle ABC, two sides of triangle are equal. It means triangle ABC is an isosceles triangle.

\angle B\cong \angle C∠B≅∠C               (Isosceles \:  triangle  \: property) \\ </p><p></p><p>m\angle B=m\angle Cm∠B=m∠C               (congruent \:  angle  \: property) \\ </p><p></p><p>35^{\circ}=m\angle C35  \degree\\ </p><p> =m∠C                   (Given, m∠B=35°)

According to angle sum property, the sum of interior angle of a triangle is 180°.

In triangle ABC,

\angle A+\angle B+\angle C=180^{\circ}∠A+∠B+∠C=180 \degree \\ </p><p> </p><p></p><p>\angle A+35^{\circ}+35^{\circ}=180^{\circ}∠A+35 \degree</p><p> +35 \degree</p><p> =180  \degree \\

\angle A+70^{\circ}=180^{\circ}∠A+70 </p><p>∘ </p><p> =180 \degree \\ </p><p> </p><p></p><p>\angle A=180^{\circ}-70^{\circ}∠A=180 \degree</p><p> −70  \degree \\ </p><p> </p><p></p><p>\angle A=110^{\circ}∠A=110 \degree</p><p>

Median of an isosceles triangle divides the triangle in two equal parts.

In triangle ABC, AD is median. So,

\triangle ABD\cong \triangle ACD△ABD≅△ACD \\ </p><p></p><p>\angle BAD\cong \angle CAD∠BAD≅∠CAD \\ </p><p></p><p>Angle  \: A  \: is  \: the \:  sum \:  of  \: angle \:  BAD  \: and  \: CAD. \\ </p><p></p><p>\angle BAD+\angle CAD=\angle A∠BAD+∠CAD=∠A \\ </p><p></p><p>\angle BAD+\angle BAD=110^{\circ}∠BAD+∠BAD=110  \degree \\ </p><p>  (\angle BAD\cong \angle CAD)(∠BAD≅∠CAD) \\ </p><p></p><p>2\angle BAD=110^{\circ}2∠BAD=110 </p><p>∘ \\ </p><p> </p><p></p><p>Divide  \: both \:  sides \:  by 2.</p><p></p><p>\angle BAD=55^{\circ}∠BAD=55  \degree\\

Attachments:
Similar questions