Math, asked by esha2576, 5 months ago

please give answer with explanation​

Attachments:

Answers

Answered by VishnuPriya2801
6

Question:-

The value of :

 \sf  \:  \dfrac{ {2}^{x + 3} \times  {3}^{2x - y}  \times  {5}^{x + y  + 3}   \times {6}^{y + 1}  }{ {6}^{x + 1}  \times  {10}^{y + 3} \times  {15}^{x}  }

is :

A) 1

B) 0

C) - 1

D) 10

E) None of these.

Answer:-

Using aᵐ⁺ⁿ = a × a and a = a / a we get,

 \implies \sf \:  \dfrac{ {2}^{x}  \times  \not{ {2}^{3} }  \times {3}^{2x} \times  {5}^{x}  \times  {5}^{y}   \times \not{ {5}^{3} } \times {6}^{y}  \times \not{  {6}^{1} } }{ {3}^{y}  \times  {6}^{x} \times   \not{{6}^{1} }  \times  {10}^{y}  \times  \not{ {10}^{3} } \times  {15}^{x} }  \\  \\

Using aᵐⁿ = (aᵐ)ⁿ and aᵐ × bᵐ = (ab)ᵐ we get,

 \: \implies \sf \: \dfrac{(2 \times  {3}^{2}  \times 5) ^{x}  \times (5 \times 6) ^{y} }{(3 \times 10)^{y} \times (15 \times 6) ^{x}  }  \\  \\  \\ \implies \sf \: \frac{ {90}^{x} \times  {30}^{y} }{ {30}^{y}  \times  {90}^{x} }  \\  \\  \\ \implies \underline{ \underline{ \sf \red 1}}

The required answer is 1 (Option - A).

___________________________

Some Important Formulae:

  • aᵐ × aⁿ = aᵐ⁺ⁿ

  • aᵐ / aⁿ = aᵐ⁻ⁿ

  • a⁰ = 1

  • a¹ = a

  • (aᵐ)ⁿ = aᵐⁿ

  • aᵐ × bᵐ = (ab)ᵐ
Answered by Anonymous
768

Given :

  • : \implies \sf \:  \:  \:  \:  \:  \: \: \:\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}6^{y+1}}{6^{x+1}{\times}10^{y+3}{\times}15^x}  \:  \\

To find :

  • : \implies \sf \:  \:  \:  \:  \:  \: \: \:\text{Simplified form of $\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}6^{y+1}}{6^{x+1}{\times}10^{y+3}{\times}15^x}$} \:  \\ </li><li>

Solution :

Consider :

: \implies \sf \:  \:  \:  \:  \:  \: \: \: \dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}6^{y+1}}{6^{x+1}{\times}10^{y+3}{\times}15^x}  \\ </p><p></p><p>

</p><p></p><p>: \implies \sf \:  \:  \:  \:  \:  \: \: \: =\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}2^{y+1}{\times}3^{y+1}}{2^{x+1}{\times}3^{x+1}{\times}2^{y+3}{\times}5^{y+3}{\times}3^x{\times}5^x} \:  \\  \\

: \implies \sf \:  \:  \:  \:  \:  \: \: =\dfrac{2^{x+y+4}{\times}3^{2x+1}{\times}5^{x+y+3}}{2^{x+y+4}{\times}3^{2x+1}{\times}5^{x+y+3}}= 1 \\  \\

Both numerator and denominator having same factors

Option A is correct Answer is 1

Attachments:
Similar questions