Math, asked by mdqais, 8 days ago

Please give as detailed answer as possible for this question. Note: PLEASE DONT SPAM . WINNER WILL GET 20RS PAYTM CASH ADD YOUR UPI ID OR MOBILE NUMBER IN THAT CASE.​

Attachments:

Answers

Answered by kinzal
4

Hey ❤️

here is your answer ⤵️

Answer :

  • 9

Solution :

 \longrightarrow Here We shall use the identity (a + b)² = a² + b² + 2ab

 \longrightarrow So, take here a = x² and b =  \sf \frac{1}{x²}

Hence,

 \sf \bigg( x² + \frac{1}{x²} \bigg)^{2} = (x²)^{2} + \bigg(\frac{1}{x²} \bigg)^{2} + 2 × (x²)\bigg(\frac{1}{x²} \bigg) \\

 \sf \bigg( x² + \frac{1}{x²} \bigg) ^{2} = (x²)^{2} + \bigg(\frac{1}{x²} \bigg)^{2} + 2 × (\cancel{x²})×\bigg(\frac{1}{\cancel{x²}} \bigg) \\

 \sf  \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  \bigg)^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \\

 \longrightarrow Now, According to question,  \sf x^{4} + \frac{1}{x^{4}} = 6239 \\

 \sf  \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  \bigg) ^{2}  = 6239 + 2 \\

 \sf  \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  \bigg) ^{2}  = 6241 \\

 \sf  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \sqrt{6241}  \\

 \sf {x}^{2}  +  \frac{1}{ {x}^{2} } = 79 \\

 \longrightarrow Now, Again We shall use the identity (a + b)² = a² + b² + 2ab

But take here a = x and b =  \sf \frac{1}{x} \\

 \sf \bigg( x + \frac{1}{x} \bigg) ^{2} = x² + \bigg(\frac{1}{x}\bigg)^{2} + 2 × (x) × \bigg( \frac{1}{x} \bigg) \\

 \sf \bigg( x + \frac{1}{x} \bigg) ^{2} = x² + \bigg(\frac{1}{x}\bigg)^{2} + 2 × \cancel{(x)} × \bigg( \frac{1}{\cancel{x}} \bigg) \\

 \sf  { \bigg(x +  \frac{1}{x} \bigg) }^{2}  =  {x}^{2}  +  \frac{1}{x ^{2} }  + 2 \\

 \longrightarrow We had already find out that,  \sf x^{2} + \frac{1}{x^{2}} = 79 \: \: So, \\

 \sf  \bigg(x +  \frac{1}{x}  \bigg) ^{2}  = 79 + 2 \\

 \sf \bigg(x +  \frac{1}{ x}  \bigg) ^{2}  = 80 \\

 \sf x +  \frac{1}{x}  =   \sqrt{81}  \\

 \underline{\boxed{ \sf x +  \frac{1}{x}  = 9}} \\

 \longrightarrow Hence, Answer is 9

I hope it helps you ❤️✔️

Similar questions