Math, asked by ⲎσⲣⲉⲚⲉⲭⳙⲊ, 6 months ago

please give correct answer ​

Attachments:

Answers

Answered by sharonmarysabu41492
4

hope it helps you a lot..

Attachments:
Answered by Sagar9040
30

{\huge{\boxed{\sf{\green{❥✰1.)Question✰}}}}}

Radius of base of a cylinder is 12cm and its height its 9cm,find its covered area and total surface area,(π=3.14)

\huge\star\underline{\mathtt\orange{❥a} \mathfrak\blue{n } \mathbb\purple{ Տ} \mathbb\pink{wer}}\star\:

282 6/7 cm^2

\Huge\bf\underbrace{\underline{\blue \dag \green{Step}}}\Huge\bf\underbrace{\underline{\blue \dag \green{by}}}\Huge\bf\underbrace{\underline{\blue \dag \green{Step}}}\Huge\bf\underbrace{\underline{\blue \dag \green{Explanation}}}

(See the Fig For better explanation)

The total surface area of a cone is the sum of the area of the base and the lateral area:

SA=\pi rs^2+\pi rs

Where:

r = radius

s= slant height

To find the slant height consider the right triangle formed by the radius(base), the height(vertical leg) then the slant height is the hypotenuse so:

s^2=r^2+h^2=5^2+12^2=169

s=13cm

Thus:

SA=22/7(25+5*13)=1980/7=282 6/7 cm^2

\huge\mathbb\fcolorbox{pink}{lavenderblush}{♡Short}\huge\mathbb\fcolorbox{pink}{lavenderblush}{♡ᎪղՏωᎬя᭄}

(T S A =282 (6/7)cm^2

"Cone Total surface area " T S A = (1/2) (2pir) * h_s + pi r^2

r = 5 cm, h = 12 cm, h_s = sqrt(5^2 + 12^2) = 13 cm

(T S A = pi * 5 * 13 + pi 5^2 = 90pi = 1980/7 = 282 (6/7)cm^2

{\huge{\underline{\bf{\pink{❥✰➵2.)Question :-✰}}}}}

cos 60 degree x cos 45 degree x sin 30 degree

\huge{\textbf{{{\color{navy}{Ꭺŋ}}{\red{ѕw}}{\pink{єr♤࿐}}{\color{pink}{:}}}}}\bf\huge{\purple{╔════════♡═╗}}

2-\sqrt{3}

\Huge\bf\underbrace{\underline{\blue \dag \green{Step}}}\Huge\bf\underbrace{\underline{\blue \dag \green{by}}}\Huge\bf\underbrace{\underline{\blue \dag \green{Step}}}\Huge\bf\underbrace{\underline{\blue \dag \green{Explanation!}}}

to obtain the exact value for the expression use the

trigonometric identities;

(x)cosC-cosD=-2sin((C+D)/2)sin((C-D)/2)

(x)sinC+sinD=2sin((C+D)/2)cos((C-D)/2)

(x)sin(x+-y)=sinxcosy+-cosxsiny

(x)cos(x+-y)=cosxcosy∓sinxsiny

simplifying the numerator

"with "C=45" and "D=75

cos45-cos75=-2sin60sin(-15)=2sin60sin15

to obtain the exact value for  sin 15

sin15=sin(45-30)=sin45cos30-cos45sin30

(sin15)=1/\sqrt2xx\sqrt3/2-1/\sqrt2xx1/2

(sin15)=(\sqrt3-1)/(2\sqrt2)=1/4(\sqrt6-\sqrt2)

rArrcos45-cos75=2xx\sqrt3/2xx1/4(\sqrt6-sqrt2)

=1/4\sqrt3(\sqrt6-\sqrt2)

simplifying the denominator

sin45+sin75=2sin60cos(-15)=2sin60cos15

to obtain the exact value for "cos15

cos15=cos(45-30)=cos 45 cos 30+sin 45 sin 30

(cos15)=1/sqrt2xx\sqrt3/2+1/\sqrt2xx1/2

\(cos15)=(\sqrt3+1)/(2\sqrt2)=1/4\sqrt3(\sqrt6+\sqrt2)

rArrsin45+sin75=2xx\sqrt3/2xx1/4(\sqrt6+\sqrt2)

=1/4\sqrt3(\sqrt6+\sqrt2)

rArr(cos45-cos75)/(sin45+sin75)

=(cancel(1/4\sqrt3)(\sqrt6-\sqrt2))/(cancel(1/4\sqrt3)(\sqrt6+\sqrt2))

=(\sqrt6-\sqrt2)/(\sqrt6+\sqrt2)xx(\sqrt6-\sqrt2)/(\sqrt6-sqrt2)  "rationalise denominator

=(6-2\sqrt12+2)/(6-2)=(8-2(2\sqrt3))/4=2-\sqrt3

Attachments:
Similar questions