Math, asked by krishnamurthimurthi2, 3 months ago

please give correct answer​

Attachments:

Answers

Answered by Suwathiangel
2

Step-by-step explanation:

Please mark me as brainliest

Attachments:
Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
62

\large\bf{{\purple{{{\underline{\underline{Given:-}}}}}}}

  • cosec (90 - θ) - Sin(90 - θ) = 1
  • (cosecθ - Sinθ) (tanθ + cotθ) = 1

\large\bf{{\purple{{{\underline{\underline{To  \: find:-}}}}}}}

  • We have to proof that both are equal to 1.

\large\bf{{\purple{{{\underline{\underline{Formula  \: used:-}}}}}}}

  • cosec 90⁰- θ = secθ
  • sin 90⁰ - θ = cosθ

\large\bf{{\purple{{{\underline{\underline{As \:  we  \: know:-}}}}}}}

  • secθ = 1/cosθ
  • cosecθ = 1/sinθ

\large\bf{{\purple{{{\underline{\underline{Step  \: by  \: step  \: explaination:-}}}}}}}

Evaluating values in the given statement...

(secθ - cosθ)(cosecθ - sinθ)(sinθ/cosθ + cosθ/sinθ)

Now calculating...

→ (1/cosθ - cosθ) (1/sinθ - sinθ) (sinθ/cosθ + cosθ/sinθ)

→ (1/cosθ - cosθ) (1/sinθ - sinθ) (sin²θ+cos²θ/ sinθ+cosθ)

→ (1 - cos²θ / cosθ) (1 - sin²θ) / sinθ) ( 1 / cosθ.sinθ)

Now at last prooving...

(sin²θ / cosθ) (cos²θ / sinθ) ( 1 / cosθ.sinθ) = 1

Prooved✔️

Similar questions