Math, asked by cherryred, 9 months ago

PLEASE GIVE EXPLAIN WITH STEPS.
The answer is option 4 but why not option 1???​

Attachments:

Answers

Answered by Anonymous
30

AnswEr :

Given Expression,

 \sf \: tan {}^{ - 1} (1) + tan {}^{ - 2} (2) +  {tan}^{ - 1} (3)

We know that,

 \sf \: tan {}^{ - 1} x +  {tan}^{ - 1} (y) = tan {}^{ - 1}  \bigg( \dfrac{x + y}{1 - xy}  \bigg)

Therefore,

 \sf \: tan {}^{ - 1} (2) +  {tan}^{ - 1} (3) = tan {}^{ - 1}  \bigg( \dfrac{2 + 3}{1 - (2)(3)}  \bigg)  \\  \\  \implies \sf \: \: tan {}^{ - 1} (2) +  {tan}^{ - 1} (3) = tan {}^{ - 1}  \bigg( -  \dfrac{5}{5}  \bigg)  \\  \\  \implies \:  \sf \: tan {}^{ - 1} (2) +  {tan}^{ - 1} (3) =  {tan}^{ - 1}( - 1)

The expression can be re-written as :

 \sf \:  tan {}^{ - 1} (1)  +  {tan}^{ - 1} ( - 1)

Similarly,

 \longrightarrow \:  \sf \:  {tan}^{ - 1} \bigg( \dfrac{1 + ( - 1)}{1 - 1x - 1)}   \bigg) \\  \\  \longrightarrow \sf \:  {tan}^{ - 1} (0) \\  \\  \longrightarrow \sf \: tan {}^{ - 1} (tan \: \pi) \\  \\  \longrightarrow \: \pi

Thus,

 \sf \: tan {}^{ - 1} (1) + tan {}^{ - 2} (2) +  {tan}^{ - 1} (3) = \pi

Option (4) is correct.

Note :

  • The three terms tan^(-1) [1], tan^(-1) [2] and tan^(-1) [3] are positive real numbers, so their sum should also be positive. Thus,zero can't be the answer.

Anonymous: Awesome!
Anonymous: Thank you!
Anonymous: Amazing !
Anonymous: Thank you!
Answered by acsahjosemon40
0

Answer:

OPTION (4) ÍŠ ÇORRECT...

HOPE IT WOULD HELP YOU.....

Similar questions