Math, asked by rajshravan080100, 9 months ago

Please give explanation to answer 23

Attachments:

Answers

Answered by Shilpa00
0

 \int \:  \frac{x {}^{2} + 1 }{ \sqrt{x {}^{2}  + 2} }  \:  \: dx

Add and subtract 1 in the given integral .

 \int \:  \frac{x {}^{2} + 1 + 1 - 1 }{ \sqrt{x {}^{2}  + 2} }  \:  \: dx \\  \\  =  >  \int \:  \frac{x {}^{2} + 2 }{ \sqrt{x {}^{2}  + 2} }  \:  \: dx  \: -  \int \:  \frac{ 1 }{ \sqrt{x {}^{2}  + 2} }  \:  \: dx \\  \\  =  >  \int \:   \sqrt{x {}^{2} + 2 }  \:  \: dx \:  -  \int \: \frac{1}{ \sqrt{x {}^{2}  + 2} }  \:  \: dx \:

= ⅔ ( x² + 2 )^3/2 - 1/√2 tan^-1 x/√2 + C

Similar questions