Math, asked by mir11, 1 year ago

please give full explanation

Attachments:

Answers

Answered by Amethesh
0
This is the answer for question. By this method you can solve similar problems
Attachments:
Answered by wifilethbridge
0

Answer:

8

Step-by-step explanation:

Given : f(x)=3x^2-6x+4

To Find : \frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2(\frac{1}{\alpha}+\frac{1}{\beta})+3\alpha \beta

Solution:

\alpha and \beta are teh zeroes of the f(x)

\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2(\frac{1}{\alpha}+\frac{1}{\beta})+3\alpha \beta

\frac{\alpha^2+\beta^2}{\alpha \beta}+2(\frac{\alpha+\beta}{\alpha \beta}) + 3 \alpha \beta

Using Identity :(a+b)^=a^2+b^2+2ab

\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha \beta}+2(\frac{\alpha+\beta}{\alpha \beta}) + 3 \alpha \beta---A

Sum of zeroes = \alpha +\beta = \frac{-b}{a}=\frac{-(-6)}{3}=2

Product of zeroes = \alpha \beta =\frac{c}{a}=\frac{4}{3}

Substitute these values in A

\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha \beta}+2(\frac{\alpha+\beta}{\alpha \beta}) + 3 \alpha \beta

\frac{2^2-2 \times \frac{4}{3}}{\frac{4}{3}}+2(\frac{2}{\frac{4}{3}}) + 3 (\frac{4}{3})

8

So,  \frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2(\frac{1}{\alpha}+\frac{1}{\beta})+3\alpha \beta=8

Similar questions