Please give me an explanation, the answer in the book shows :
5\leq x <7
Attachments:
Answers
Answered by
3
Solution :-
⇒x² - 3x ≥ 10
⇒x² - 3x - 10 ≥ 0
⇒x² - 5x + 2x - 10 ≥ 0
⇒x ( x - 5 ) + 2 ( x - 5 ) ≥ 0
⇒( x + 2 ) ( x - 5 ) ≥ 0
Therefore critical points are -2 and 5.
Hence x ∈ ( - ∞, - 2 ] U [ 5 , ∞ ) . . . Say eqⁿ(1)
Now,
⇒( x - 5 )² < 4
⇒x² + 25 - 10 x < 4
⇒x² - 10x - 21 < 0
⇒x² - 7x - 3x - 21 < 0
⇒x ( x - 7 ) - 3 ( x - 7 ) < 0
⇒( x - 3 ) ( x - 7 ) < 0
So the critical points are 3 and 7.
Hence x ∈ ( 3, 7 ) . . . Say eqⁿ(2)
Finding intersection of eqⁿ(1) and eqⁿ(2)
According to eqⁿ(1), x ∈ ( -∞, - 2 ] U [ 5 , ∞ )
According to eqⁿ(2), x ∈ ( 3, 7 )
The common solution set of eqⁿ(1) and eqⁿ(2) is given by,
⇒ x ∈ ( 5, 7)
Therefore the solution is,
⇒ 5 < x < 7
Similar questions