Math, asked by kumaranand143, 11 months ago

Please give me Answe this question​

Attachments:

Answers

Answered by streetburner
5

Step-by-step explanation:

x + 1/x = 4

x + 1/x = 4 ---( 1 )

Do the square of equation ( 1 ),

( x + 1/x )² = 4²

x² + 1/x² + 2 = 16

x² + 1/x² = 16 - 2

x² + 1/x² = 14 --( 2 )

Again do the square of equation ( 2 ),

( x² + 1/x² )² = 14²

x⁴ + 1/x⁴ + 2 = 196

x⁴ + 1/x⁴ = 196 - 2

= 194

Answered by Anonymous
11

Question :

If x + \dfrac{1}{x} = 4. Then find x⁴ + \dfrac{1}{{x}^{4}}

Solution :

=> x + \dfrac{1}{x} = 4

Squaring on both sides

=> \bigg(x \:  +  \:  \dfrac{1}{x}\bigg) \:  =  \: (4)^{2}

(a + b)² = a² + b² + 2ab

=>  {x}^{2} \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  +  \: 2 \bigg(x \:  \times  \:  \dfrac{1}{x }\bigg) \:  =  \: 16

=>  {x}^{2} \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  +  2\:  =  \: 16

=>  {x}^{2} \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  =  \: 16 \: - \: 2

=>  {x}^{2} \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  =  \: 14 _________ (eq 1)

Again squaring on both sides

=> \bigg( {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }\bigg)^{2}  \:  =  \: (14)^{2}

=> {x}^{4}  \:  +  \:  \dfrac{1}{ {x}^{4} } \:  +  \: 2 \:  =  \: 196

=> {x}^{4}  \:  +  \:  \dfrac{1}{ {x}^{4} } \:  =  \: 196 \: - \: 2

=> {x}^{4}  \:  +  \:  \dfrac{1}{ {x}^{4} } \:   =  \: 194

_____________________________

{x}^{4}  \:  +  \:  \dfrac{1}{ {x}^{4} } \:   =  \: 194

___________ [ ANSWER ]

____________________________

Similar questions