Math, asked by kanishshyam45, 3 days ago

please give me answer​

Attachments:

Answers

Answered by ss7870381546
1

Answer:

{(5)^6×5^4} / 5^7

{5^(6+4)}/5^7

5^10/5^7

5^(10-7)

5^3

125

so, 5^3 and 125 is the same thing.

hope it's help you.

Answered by xSoyaibImtiazAhmedx
1

 \large \bold{ \frac{ {(5 ^{2} )}^{3} \times  {5}^{4}  }{ {5}^{7} } }

 = \large \bold{ \frac{ 5 ^{2 \times 3}  \times  {5}^{4}  }{ {5}^{7} } }

 = \large \bold{ \frac{ 5 ^{6}  \times  {5}^{4}  }{ {5}^{7} } }

 = \large \bold{ \frac{ 5 ^{6 + 4}   }{ {5}^{7} } }

= \large \bold{ \frac{ 5 ^{10}   }{ {5}^{7} } }

= \large \bold{ { 5 ^{10 - 7}   }{  } }

= \large \bold{ { 5 ^{3}   }{  } }

= \large  \boxed{\bold{ { 125  }{  } }}

_________________________

Required identities :–

 \boxed{ \bold{ {(a ^{m} )}^{n}  =  {a}^{m \times n} }}

 \boxed{ \bold{{ {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} }}}

 \boxed{ \bold{ \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }}

Similar questions