Math, asked by ItzMissDrugbabe, 2 months ago

please give me Answer for this question​

Attachments:

Answers

Answered by ajr111
2

Answer:

Option (c) x^{n-1} is the right answer

Step-by-step explanation:

\huge {\text{$[(x^n)^{n - \frac{1}{n}}]^{\frac{1}{n+1}}$}} \\\\\implies \huge {\text{$[(x^n)^{\frac{n^2-1}{n}}]^{\frac{1}{n+1}}$}}\\\\\implies \huge {\text{$[(x)^{\frac{n(n^2-1)}{n}}]^{\frac{1}{n+1}}$}} \\\\\implies \huge {\text{$[(x)^{{(n^2-1)}}]^{\frac{1}{n+1}}$}} \\\\\implies \huge {\text{$[(x)^{{(n+1)(n-1)}}]^{\frac{1}{n+1}}$}} \\\\\implies \huge {\text{$(x)^{\frac{(n+1)(n-1)}{n+1}}$}  \\\\\\\\ \\\implies \huge {\text{$(x)^{(n-1)}$} \\\\

Hope it helps

Please mark as brainliest

Answered by Anonymous
3

Answer:

Option (C) is the right answer

Step-by-step explanation:

[( {x}^{n})^{n -  \frac{1}{n} } ]^{ \frac{1}{n + 1} }

 \scriptsize[( {x}^{n})^{  \frac{n² - 1}{n} } ]^{ \frac{1}{n + 1} }

 \scriptsize[( {x}^{n})^{  \frac{(n - 1)(n + 1)}{n} } ]^{ \frac{1}{n + 1} }  \: [ \because \:  {a}^{2}  -  {b}^{2}  = (a - b)(a + b)]

( {x}^{n})^{  \frac{(n - 1) \cancel{(n + 1)}}{n} } \times ^{ \frac{1}{ \cancel{(n + 1)}} }  \:

( {x}^{n} )^{ \frac{(n - 1)}{n} }

{x}^{ \cancel{n} \times  \frac{(n - 1)}{ \cancel{n}} }

 {x}^{n - 1}

Similar questions