Math, asked by manavbanga39, 8 months ago

please give me answer. I will mark brainliest for 1st​

Attachments:

Answers

Answered by Anonymous
12

given:

\sf x = 2 + \sqrt{3}x

To find :-

\sf (i) x^{2} + \frac{1}{x^{2} }

\sf (ii) x^{3} + \frac{1}{x^{3} }

Solution :-

\sf x = 2 + \sqrt{3}

Therefore,

\sf \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} }

➜ \sf \frac{1}{x} = \frac{{2 - \sqrt{3} } }{ (2 )^{2}   -  (\sqrt{3} )^{2} }

➜\sf \frac{1}{x} = \frac{{2 - \sqrt{3} } }{ 4 - 3 }

➜\sf \frac{1}{x} = {2 - \sqrt{3} }

now,

 \sf</u><u> </u><u>x</u><u> +  \frac{1}{x}

</u><u>➜ \sf 2 + \cancel{\sqrt{3}}+ 2 - \cancel {\sqrt{3}}</u><u>

 \sf➜2 + 2

 \sf➜4

_________________________

 \sf( i)on \: squaring \: both \: sides, we \: have</u><u>:</u><u>

\sf➜(x +  \frac{1}{x} )^{2}   =  ({4})^{2}

\sf➜ {x}^{2}  +  \frac{1}{x^{2} } = 16 - 2

</u><u>\</u><u>boxed</u><u>{</u><u>\sf➜ {x}^{2}  +  \frac{1}{x^{2} }</u><u> =14</u><u>}</u><u>

_________________________

 \sf(ii) On  \: cubing \:  both \:  sides \: , we \:  have :

➜ \sf (x + \frac{1}{x} )^{3} = (4)^{3}

➜ \sf x^{3} + \frac{1}{x^{3}} + 3(x + \frac{1}{x} ) = 64

➜ \sf x^{3} + \frac{1}{x^{3}} +3 \times 4 = 64

➜ \sf x^{3} + \frac{1}{x^{3}} +12 = 64

➜ \sf x^{3} + \frac{1}{x^{3}} = 64 - 12

\boxed{\sf x^{3} + \frac{1}{x^{3}} = 52}

\red {\sf Therefore</u><u>,</u><u>value \: of \: x^{2} + \frac{1}{x^{2}} = 14 \: and \: x^{3} + \frac{1}{x^{3}} = 52.}

Similar questions