please give me answer I will mark you as brainliest I will follow you
Answers
Answer:
hope it helps u plz follow me and mark it as brain list ^_^....
Step-by-step explanation:
x= [3(a+b)±√9a²+9b²-14ab]/4
Explanation:
We have
\frac{a}{(x-a)}+\frac{b}{(x-b}=2
(x−a)
a
+
(x−b
b
=2
LCM of (x-a)and (x-b) = (x-a)(x-b)
Now,
\frac{a(x-b)+b(x-a)}{(x-a)(x-b)}=2
(x−a)(x−b)
a(x−b)+b(x−a)
=2
\implies \frac{ax-ab+bx-ab}{x^{2}-ax-bx+ab}=2⟹
x
2
−ax−bx+ab
ax−ab+bx−ab
=2
\implies ax+bx-2ab=2(x^{2}-ax-bx+ab)⟹ax+bx−2ab=2(x
2
−ax−bx+ab)
\implies 0=2x^{2}-2ax-2bx+2ab-ax-bx+2ab⟹0=2x
2
−2ax−2bx+2ab−ax−bx+2ab
\implies 2x^{2}-3(a+b)x+4ab=0⟹2x
2
−3(a+b)x+4ab=0
Compare this with Ax²+Bx+C=0
we get,
A=2 , B = -3(a+b), C = 4ab
Discreminant (D) = B²-4AC
= [-3(a+b)]²-4×2×4ab
= 9(a+b)²-32ab
= 9(a²+b²+2ab)-32ab
= 9a²+9b²+18ab-32ab
= 9a²+9b²-14ab
Now ,
x = [-B±√D]/(2A)
= {-[-3(a+b)]±√9a²+9b²-14ab}/4
x= [3(a+b)±√9a²+9b²-14ab]/4
Answer:
cross multiply it
Step-by-step explanation:
a[x+a]=b[x-b]
ax+a²=bx_b²
ax-bx=-a²-b²
∴ hence proved
i hope this might help you