Math, asked by anushka2035, 1 year ago

please give me answer I will mark you as brainliest I will follow you​

Attachments:

Answers

Answered by parul0276
1

Answer:

hope it helps u plz follow me and mark it as brain list ^_^....

Step-by-step explanation:

x= [3(a+b)±√9a²+9b²-14ab]/4

Explanation:

We have

\frac{a}{(x-a)}+\frac{b}{(x-b}=2

(x−a)

a

+

(x−b

b

=2

LCM of (x-a)and (x-b) = (x-a)(x-b)

Now,

\frac{a(x-b)+b(x-a)}{(x-a)(x-b)}=2

(x−a)(x−b)

a(x−b)+b(x−a)

=2

\implies \frac{ax-ab+bx-ab}{x^{2}-ax-bx+ab}=2⟹

x

2

−ax−bx+ab

ax−ab+bx−ab

=2

\implies ax+bx-2ab=2(x^{2}-ax-bx+ab)⟹ax+bx−2ab=2(x

2

−ax−bx+ab)

\implies 0=2x^{2}-2ax-2bx+2ab-ax-bx+2ab⟹0=2x

2

−2ax−2bx+2ab−ax−bx+2ab

\implies 2x^{2}-3(a+b)x+4ab=0⟹2x

2

−3(a+b)x+4ab=0

Compare this with Ax²+Bx+C=0

we get,

A=2 , B = -3(a+b), C = 4ab

Discreminant (D) = B²-4AC

= [-3(a+b)]²-4×2×4ab

= 9(a+b)²-32ab

= 9(a²+b²+2ab)-32ab

= 9a²+9b²+18ab-32ab

= 9a²+9b²-14ab

Now ,

x = [-B±√D]/(2A)

= {-[-3(a+b)]±√9a²+9b²-14ab}/4

x= [3(a+b)±√9a²+9b²-14ab]/4

Answered by prabanjan21
2

Answer:

cross multiply it

Step-by-step explanation:

a[x+a]=b[x-b]

ax+a²=bx_b²

ax-bx=-a²-b²

∴ hence proved

i hope this might help you

Similar questions