Math, asked by varsharani55, 3 months ago

please give me answer it is very urgent​

Attachments:

Answers

Answered by SweetPrapti
15

Answer:

Given,

x = 1 -  \sqrt{2}

therefore,

 \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2} }

 =  >  \frac{1}{x}  =  \frac{1(1 +  \sqrt{2}) }{(1  -  \sqrt{2})(1 +  \sqrt{2}  )}

 =  >  \frac{1}{x}  =  \frac{1  +  \sqrt{2} }{( {1}^{2} ) - ( { \sqrt{2} )}^{2} }

 =  >  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{1 - 2}

 =  >  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ - 1}

 =  >  \frac{1}{x}  =   - (1  +  \sqrt{2} )

Now,

 {(x -  \frac{1}{x} )}^{2}  =  {(1 -  \sqrt{2}  + 1 +  \sqrt{2} ) }^{2}

 {(x -  \frac{1}{x} )}^{2}  =  {(1 + 1 ) }^{2}

 {(x -  \frac{1}{x} )}^{2}  =  {(2)}^{2}

 {(x -  \frac{1}{x} )}^{2}  = 4

HOPE IT WORKS OUT FOR YOU AND MARK ME BRAINLIEST AND THANKS MY ANSWERS

Answered by ridhya77677
1

Answer:

x = 1 -  \sqrt{2}  \\  {(x -  \frac{1}{x} )}  = {1 -  \sqrt{2}  +  \frac{1}{1 -  \sqrt{2} }}\\  = 1 -  \sqrt{2}  +  \frac{1 +  \sqrt{2} }{(1 -  \sqrt{2} )(1 +  \sqrt{2} )}  \\  = 1 -  \sqrt{2}  +  \frac{1 +  \sqrt{2} }{1 - 2}  \\  = 1 -  \sqrt{2}  - 1  -  \sqrt{2}  \\  =  - 2 \sqrt{2}  \\ so \:  {{(x -  \frac{1}{x} )} }^{2}  =  {( - 2 \sqrt{2} )}^{2}  = 8

Similar questions