Math, asked by tejinder3094, 10 months ago

Please give me answer of following fast and l will mark you as Brainliest ​

Attachments:

Answers

Answered by AANEYA
0

Answer:

ÑØW_PLZZZZZZZZZZZZZZZZ_ MÀRK_MY_ÀNSWÈR_THÉ_BRAÍÑLIÉST_AÑSWÉR

Attachments:
Answered by umiko28
2

Answer:

\large\underline{ \underline{ \red {your \: \: \: answe  }}} \\ 1) {4x}^{3} +  {8x}^{2} - x - 2 \\2)( {5x}^{2} +  {y}^{2}  )( {5x}^{2}  -  {y}^{2} )  \\   3) {5}^{3} \times  {2}^{6}  \\  4)x =  - 1 \\ 5) \frac{ {x}^{2} + 1 }{ {x}^{2} }

Step-by-step explanation:

1) \bf\  \mapsto \bigstar(2x + 1)(x + 2)(2x - 1) \bigstar \\  \\\bf\  \implies(2x + 1)(2x - 1)](x + 2)\\  \\  \bf\  \implies   [ ({2x})^{2} -  {1}^{2}](x + 2) \:  \:  \:  \:  \:  [\therefore (x + y)(x - y) =  {x}^{2} -  {y}^{2}]  \\  \\ \bf\  \implies( {4x}^{2}  - 1)(x + 2) \\  \\ \bf\underline { \implies {4x}^{3}  +   {8x}^{2}  - x - 2 }\\  \\  \\ 2) \bigstar  \bf\ {25x}^{4} -  {y}^{4}   \bigstar \\  \\  \bf\  \leadsto { ({5x}^{2} )}^{2}   -  ({ {y}^{2}) }^{2} \:  \:  \:  \:  \:     [\therefore {x}^{2} -  {y}^{2} = (x + y)(x - y) ] \\  \\ \bf\red{  \leadsto ( {5x}^{2} -  {y}^{2})( {5x}^{2}  +  {y}^{2} )  } \\  \\ 3)\bf\  \bigstar \frac{ {5}^{5} \times  {3}^{ - 5}  }{125  \times  {6}^{ - 5}  \times  {10}^{ - 1} }  \bigstar \\  \\ \bf\ \hookrightarrow \frac{ {5}^{5}  \times  \frac{1}{ {3}^{5} }  }{ {5}^{3} \times  \frac{1}{ {6}^{5}  }   \times  \frac{1}{10} }  \\  \\ \bf\ \hookrightarrow \frac{ \frac{ {5}^{5} }{ {3}^{5} } }{ \frac{ {5}^{3} }{ {6}^{5} \times 10 } }  \\  \\ \bf\ \hookrightarrow \frac{ {5}^{5} }{ {3}^{5}  }  \times  \frac{ {6}^{5} \times 10 }{ {5}^{3} }  \\  \\ \bf\ \hookrightarrow \frac{ {5}^{5}  \times ( {2}^{5} \times  {3}^{5} ) \times (2 \times 5) }{ {3}^{5} \times {5}^{3}   }  \\  \\ \bf\ \hookrightarrow \frac{ {5}^{5} \times 5 \times  {2}^{5} \times 2  }{ {5}^{3} }  \\  \\ \bf\ \hookrightarrow \frac{ {5}^{5 + 1}  \times  {2}^{5 + 1} }{ {5}^{3} }  \\  \\ \bf\ \hookrightarrow \frac{ {5}^{6}  \times  {2}^{6} }{  {5}^{3}  }  \\  \\ \bf\ \hookrightarrow {5}^{6 - 3}  \times  {2}^{6}  \\  \\ \bf\boxed{ \hookrightarrow {5}^{3}  \times  {2}^{6}}  \\  \\  4)\bigstar  \bf\ \:   \frac{ ({ \frac{5}{7}) }^{ - x} }{ ({ \frac{5}{7}) }^{ - 4}  }  =  (\frac{5}{7})^{ 5} \bigstar \\  \\  \bf\ \leadsto  { \frac{5}{7} }^{ - x - ( - 4)}   =  { \frac{5}{7} }^{5}  \\  \\ \bf\ \leadsto  - x - ( - 4) = 5 \\  \\ \bf\ \leadsto  - x + 4 = 5 \\  \\ \bf\ \leadsto  - x = 5 - 4 \\  \\ \bf\ \leadsto  - x = 1 \\  \\ \bf\ \underline{ x =  - 1} \\  \\ \bf\ \bigstar  {x}^{2}  +  \frac{1}{ {x}^{2} } \bigstar  \\  \\ \bf\ \boxed{ \frac{ {x}^{4}  + 1}{ {x}^{2} } }

\large\boxed{ \fcolorbox{lime}{orange}{hope \: it \: help \: you}}

Similar questions