Math, asked by 12344678910, 2 months ago

please give me answer of maths question 4​

Attachments:

Answers

Answered by pratimasharma0574
2

Answer:

ok

Step-by-step explanation:

a container shaped like a right circular cylinder having diameter 12 cm and height 15 cm .

12 + 15

27

then ,

the ice cream is to be filled into cones of height 12 cm and diameter 6 cm .

12 - 6

6

so ,

27 - 6

21 cm is the answer

Answered by Anonymous
2

HERE IS YOUR ANSWER...⬇⬇

\underline \bold \red{SOLUTION}

➡Given,

For the right circular cylinder ,

Diameter = 12 cm

 \bold \red{•°• Radius , R = \frac{12}{2} \: \: cm}

 \bold \red{= 6 \: \: cm}

Height , H = 15 cm

So , Volumn of the right circular cylinderical shape container =

 \bold \red{\begin{gathered}\pi \: R {}^{2} H \\ \\ = (\frac{22}{7} \times (6) {}^{2} \times 15 )\: \: \: \: cu. \: \: cm \\ \\ = (\frac{22}{7} \times 36 \times 15) \: \: \: cu. \: cm \\ \\ = \frac{11880}{7} \: \: \: cu .\: cm\end{gathered}}

For the cone ,

Diameter = 6 cm

 \bold \red{•°• Radius , r = \frac{6}{2} \: \: cm }

= 3 \: \: \: cm

Height , h = 12 cm

And,

Radius of the hemispherical shape = Radius of the of the cone

= r

= 3 cm

•°• Volumn of the conical shape container where ice cream to be filled up = Volumn of the cone + Volumn of the hemispherical shape

 \bold \red{\begin{gathered} = \frac{1}{3} \pi \: r {}^{2} h + \frac{2}{3} \pi \: r {}^{3} \\ \\ = [\frac{1}{3} \times \frac{22}{7} \times (3) {}^{2} \times 12 ]+[ \frac{2}{3} \times \frac{22}{7} \times (3) {}^{3} ] \: \: \: cu .\: cm\\ \\ =[ (\frac{1}{3} \times \frac{22}{7} \times 9 \times 12) + (\frac{2}{3} \times \frac{22}{7} \times 27)] \: \: \: cu. \: cm\\ \\ = (\frac{792}{7} + \frac{396}{7}) \: \: \: cu. \: cm\\ \\ = \frac{1188}{7} \: \: \: cu .\: cm\end{gathered} }

Let,

No. of cones required to filled up the ice cream of the right circular cylinder = N

A.T.Q.,

\red{\begin{gathered}N \: \times volumn \: of \:one\: conical \: shape \: container \:\\ = \: volumn \: \: of \: the \: right \: circular \: cylinderical \: \\ shape \: container \: \\ \\ = > N \times \frac{1188}{7} = \frac{11880}{7} \\ \\ = > N = \frac{11880}{7} \div \frac{1188}{7} \\ \\ = > N = \frac{11880}{7} \times \frac{7}{1188} \\ \\ = > N = 10\end{gathered} }

•°• No. of cones required = 10 .

\underline \bold \red{ANSWER}

➡ 10 cones.

__________________________________

✝✝…HOPE…IT…HELPS…YOU…✝✝

Similar questions