Math, asked by vaibhavaggarwal247, 9 months ago

Please give me answer of the following sum of Maths​

Attachments:

Answers

Answered by ramisafaiza14
0

Answer:

L.H.S= R.H. S (proved)

Attachments:
Answered by Anonymous
5

Question

   \rm \: : \implies \:  \bigg( \dfrac{ {x}^{m} }{ {x}^{n} }  \bigg) {}^{ \dfrac{1}{mn} }  \times  \bigg( \dfrac{ {x}^{n} }{ {x}^{r} }  \bigg) {}^{ \dfrac{1}{nr} }  \times  \bigg( \dfrac{ {x}^{r} }{ {x}^{m} }  \bigg) {}^{ \dfrac{1}{rm} }  = 1

Solution:-

\rm \: : \implies \:  \bigg( \dfrac{ {x}^{m} }{ {x}^{n} }  \bigg) {}^{ \dfrac{1}{mn} }  \times  \bigg( \dfrac{ {x}^{n} }{ {x}^{r} }  \bigg) {}^{ \dfrac{1}{nr} }  \times  \bigg( \dfrac{ {x}^{r} }{ {x}^{m} }  \bigg) {}^{ \dfrac{1}{rm} }  = 1

Using this exponential law

 \rm :  \implies \dfrac{x {}^{a} }{ {x}^{b} }  =  {x}^{a - b}

 \rm :  \implies \:  ({x}^{a} ) {}^{b}  =  {x}^{ab}

\rm :  \implies \: x {}^{a}  \times  {x}^{b}  =  {x}^{a + b}

 \rm \:  :  \implies \:  {x}^{0}  = 1

Now we get

  \rm :  \implies( {x}^{m - n} ) {}^{ \frac{1}{mn} }  \times ( {x}^{n- r} ) {}^{ \frac{1}{nr} }   \times ( {x}^{r- m} ) {}^{ \frac{1}{rm} }

 \rm \:  :  \implies(x) {}^{ \frac{m - n}{mn} }  \times (x) {}^{ \frac{n - r}{nr} } \times (x) {}^{ \frac{r - m}{rm} }

  \rm :  \implies(x) {}^{ \frac{m}{mn}  -  \frac{n}{mn} }  \times (x) {}^{ \frac{n}{nr}  -  \frac{r}{nr} }  \times (x) {}^{ \frac{r}{rm}  -  \frac{m}{rm} }

 \rm :  \implies \: (x) {}^{ \frac{1}{n} -  \frac{1}{m}  }  \times (x) {}^{ \frac{1}{r}  -  \frac{1}{n} }  \times (x) {}^{ \frac{1}{m}  -  \frac{1}{r} }

 \rm:  \implies(x) {}^{ \frac{1}{n}  -  \frac{1}{m} +  \frac{1}{r} -  \frac{1}{n} +  \frac{1}{m}   -  \frac{1}{r}   }

 \rm :  \implies \: ( {x})^{0}  = 1

Hence proved

Similar questions