Math, asked by jalpabmosi, 1 year ago

please give me answer of this question​

Attachments:

Answers

Answered by Anonymous
5

Answer:

a = 11, b = - 6

Step-by-step explanation:

Given : {\sf{\ \ {\dfrac{ 5 + 2 {\sqrt{3}} }{ 7 + 4 {\sqrt{3}} }} = a + b {\sqrt{3}}}}

To Find : {\sf{\ \ a \ \& \ b}}

Solution :

L.H.S. = {\sf{\ \ {\dfrac{ 5 + 2 {\sqrt{3}} }{ 7 + 4 {\sqrt{3}} }}}}

___________________________

  • Rationalising the denominator.

\implies{\sf{ {\dfrac{ 5 + 2 {\sqrt{3}} }{ 7 + 4 {\sqrt{3}} }} \times {\dfrac{ 7 - 4 {\sqrt{3}} }{ 7 - 4 {\sqrt{3}} }} }}

___________________________

\implies{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{ (7 + 4 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}}}}

___________________________

{\boxed{\tt{Identity \ : \ (a - b)(a + b) = a^2 - b^2}}}

{\tt{Here, \ a = 7, \ b = 4 {\sqrt{3}} }}

___________________________

\implies{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{ (7)^2 - (4 {\sqrt{3}} )^2 }}}}

___________________________

\implies{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{ (7)^2 - (4)^2 ( {\sqrt{3}} )^2 }}}}

___________________________

\implies{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{ 49 - 48 }}}}

___________________________

\implies{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{1}}}}

___________________________

\implies{\sf{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}}

___________________________

\implies{\sf{5(7 - 4 {\sqrt3}} ) + 2 {\sqrt{3}} (7 - 4 {\sqrt{3}} )}}

___________________________

\implies{\sf{(5)(7) + (5)(- 4 {\sqrt{3}}) + (2 {\sqrt{3}})(7) + (2 {\sqrt{3}})(- 4 {\sqrt{3}})}}

___________________________

\implies{\sf{ (35) + (- 20 {\sqrt{3}}) + (14 {\sqrt{3}}) + (- 24)}}

___________________________

\implies{\sf{35 - 20 {\sqrt{3}} + 14 {\sqrt{3}} - 24}}

___________________________

  • Writing common terms together.

\implies{\sf{35 - 24 - 20 {\sqrt{3}} + 14 {\sqrt{3}} }}

___________________________

\implies{\sf{ 11 - 6 {\sqrt{3}} }}

___________________________

  • We can write this as :

\implies{\sf{(11) + (- 6) {\sqrt{3}} }}

___________________________

  • On comparing this with a + b√3, we get

\implies{\boxed{\boxed{\sf{a = 11, \ b = - 6}}}}

___________________________

Similar questions