Math, asked by jogendrasharma234, 5 months ago

please give me answer please if you don't know please move on​

Attachments:

Answers

Answered by anindyaadhikari13
2

Required Answer:-

Given to Prove:

 \rm \mapsto \dfrac{1 -  { \sin}^{4}(x) }{ \cos^{4} (x) } = 2 { \sec}^{2} (x) - 1

Proof:

Taking LHS,

 \rm  \dfrac{1 -  { \sin}^{4}(x) }{ \cos^{4} (x) }

 \rm = \dfrac{ {(1)}^{2} -  {( \sin}^{2}(x))^{2} }{ \cos^{4} (x) }

 \rm = \dfrac{(1 +  { \sin }^{2}(x))(1 -  { \sin}^{2}(x))  }{ \cos^{4} (x) }

We know that,

 \rm { \cos}^{2}(x) = 1 -  { \sin}^{2} (x)

Therefore,

 \rm \dfrac{(1 +  { \sin }^{2}(x))(1 -  { \sin}^{2}(x))  }{ \cos^{4} (x) }

 \rm  = \dfrac{(1 +  { \sin }^{2}(x)) { \cos}^{2}(x)  }{ \cos^{4} (x) }

 \rm  = \dfrac{1 +  { \sin }^{2}(x) }{ \cos^{2} (x) }

 \rm  = \dfrac{1}{ \cos^{2} (x) } +  \dfrac{ { \sin}^{2}(x) }{ { \cos}^{2}(x) }

 \rm =  { \sec}^{2}(x) +  { \tan}^{2} (x)

We know that,

 \rm  { \sec}^{2}(x) -  { \tan}^{2} (x) = 1 \implies { \tan}^{2}(x)  =  { \sec}^{2} (x) - 1

Therefore,

 \rm  { \sec}^{2}(x) +  { \tan}^{2} (x)

 \rm  =  { \sec}^{2}(x) +  { \sec}^{2} (x) - 1

 \rm  = 2{ \sec}^{2} (x) - 1

= RHS (Hence Proved)

Formula Used:

➡ sin²(x) + cos²(x) = 1

➡ sec²(x) - tan²(x) = 1

Answered by Anisha5119
4

Answer:

HEYA mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions