please give me answer to the question
please
Answers
SolutioN
Let,
- Centre of circle C ( 2 , 2 )
- Point passes through ( 4 , 5 )
Let's find Radius OR distance of ( OA )
_________________________________
MorE Information About Circle.
Equation of circle.
Answer:
SolutioN
Let,
Centre of circle C ( 2 , 2 )
Point passes through ( 4 , 5 )
\tt \longrightarrow {(x - h)}^{2} + {(y - k)}^{2} = {R}^{2}⟶(x−h)
2
+(y−k)
2
=R
2
Let's find Radius OR distance of ( OA )
\tt \longrightarrow \sqrt{ {(2 - 4)}^{2} + {(2 - 5)}^{2} }⟶
(2−4)
2
+(2−5)
2
\tt \longrightarrow \sqrt{13} .⟶
13
.
_________________________________
\tt \longrightarrow {(x - 2)}^{2} + {(y - 2)}^{2} = { \Big(\sqrt{13} \Big)}^{2}⟶(x−2)
2
+(y−2)
2
=(
13
)
2
\tt \longrightarrow {(x - 2)}^{2} + {(y - 2)}^{2} = 13.⟶(x−2)
2
+(y−2)
2
=13.
\tt \longrightarrow {x}^{2} + {y}^{2} - 4x - 4y - 5 = 0.⟶x
2
+y
2
−4x−4y−5=0.
MorE Information About Circle.
Equation of circle.
\tt \: \: \: \: \: \: \: \: x^2 + {y}^{2} + 2gx + 2fy + c = 0.x
2
+y
2
+2gx+2fy+c=0.
\tt \: \: \: \: \: \: \: \bullet \: e = 0.∙e=0.
\tt \: \: \: \: \: \: \: \bullet \: \triangle \: \cancel{=} \: \: 0.∙△
=
0.
\tt \: \: \: \: \: \: \: \bullet \: h = 0.∙h=0.
\tt \: \: \: \: \: \: \: \bullet \: a = b.∙a=b.