Math, asked by nancyyy, 1 year ago

Please give me Class 9 ICSE solutions of Mid point theorem..

Answers

Answered by ria113
2
Hiiiii Friends, here is your answer::


Here, In △△ ABC, D and E are the midpoints of sides AB and AC respectively. D and E are joined.

Given: AD = DB and AE = EC.

To Prove: DE ∥∥ BC and DE = 1212 BC.

Construction: Extend line segment DE to F such that DE = EF.

Proof: In △△ ADE and △△ CFE

AE = EC   (given)

∠∠AED = ∠∠CEF (vertically opposite angles)

DE = EF   (construction)

hence

△△ ADE ≅≅ △△ CFE (by SAS)

Therefore,
∠∠ADE = ∠∠CFE   (by c.p.c.t.)

∠∠DAE = ∠∠FCE   (by c.p.c.t.)

and AD = CF  (by c.p.c.t.)

The angles ∠∠ADE and ∠∠CFE are alternate interior angles assuming AB and CF are two lines intersected by transversal DF.

Similarly, ∠∠DAE and ∠∠FCE are alternate interior angles assuming AB and CF are two lines intersected by transversal AC.

Therefore, AB ∥∥ CF

So, BD ∥∥ CF

and BD = CF (since AD = BD and it is proved above that AD = CF)

Thus, BDFC is a parallelogram.

By the properties of parallelogram, we have

DF ∥∥ BC

and DF = BC

DE ∥∥ BC

and DE = 1212BC  (DE = EF by construction)

Hence proved.

I HOPE THIS WILL HELP YOU..
Attachments:
Answered by nilesh102
0

Construction- Extend the line segment DE and produce it to F such that, EF=DE.

In the triangle, ADE, and also the triangle CFE

EC= AE —– (given)

∠CEF = ∠AED {vertically opposite angles}

EF = DE { by construction}

hence,

△ CFE ≅ △ ADE {by SAS}

Therefore,

∠CFE = ∠ADE {by c.p.c.t.}

∠FCE= ∠DAE {by c.p.c.t.}

and CF = AD {by c.p.c.t.}

The angles, ∠CFE and ∠ADE are the alternate interior angles. Assume CF and AB as two lines which are intersected by the transversal DF.

In a similar way, ∠FCE and ∠DAE are the alternate interior angles. Assume CF and AB are the two lines which are intersected by the transversal AC.

Therefore, CF ∥ AB

So, CF ∥ BD

and CF = BD {since BD = AD, it is proved that CF = AD}

Thus, BDFC forms a parallelogram.

By the use of properties of a parallelogram, we can write

BC ∥ DF

and BC = DF

BC ∥ DE

and DE = (1/2 * BC).

Hence, the midpoint theorem is Proved.

Similar questions