Math, asked by 123sona, 1 year ago

please give me complete solution

Attachments:

Answers

Answered by siddhartharao77
4
Given the height of cylindrical bucket = 32cm.

Given the radius of cylindrical bucket = 18cm.

We know that volume of the cylindlircal bucket = pir^2h
 
                                                                                = pi * (18)^2 * 32

                                                                                 = 10368pi


Given the height of conical heap = 24cm.

Let the radius be r.

We know that volume of the cone = 1/3pir^2h

                                                          = 1/3 * pi * r^2 * 24

                                                          = 8pir^2



Now,

Volume of cylindrical bucket = Volume of the conical heap

10368pi = 8pir^2

r^2 = 10368/8

r^2 = 1296

r = 36cm.

Now,

We know that slant height of the heap l =  \sqrt{r^2 + h^2}

=  \sqrt{24^2 + 36^2}

=  \sqrt{576 + 1296}

 = \sqrt{1872}

= 12 \sqrt{13} cm.


Hope this helps!
Similar questions