Math, asked by jyotiawasthi1977, 2 months ago

please give me correct answer please ​

Attachments:

Answers

Answered by Athul4152
1

\huge\mathfrak\pink{question}

 {2}^{x}  =  {10}^{y}  =  {50}^{z}

\huge\mathfrak\pink{To \: Find}

y \:  =  \frac{2xz}{x + z}  \\

\huge\mathfrak\pink{Solution}

They will be equal to constant value 'a'

 {2}^{x}  =  {10}^{y}  =  {50}^{z}  = a \:

 {2}^{x}  = a \:  \\

2 =  {a}^{ \frac{1}{x} }  \\

\rule{7cm}{0.005cm}

 {10}^{y}  = a \\

10 =  {a}^{ \frac{1}{y} }

\rule{7cm}{0.005cm}

 {50}^{z }  = a

50 =  {a}^{ \frac{1}{z} }

\rule{7cm}{0.005cm}

 {a}^{ \frac{1}{y} -  \frac{1}{x}  }    =  \frac{10}{2}  \\

 {a}^{ \frac{1}{y} -  \frac{1}{x}  }    = 5 -  -  -  -  -  - (1)

\rule{7cm}{0.005cm}

Now ,

10 × 5 = 50

: \implies

 : \implies{a}^{ \frac{1}{y} }  \times  {a}^{ \frac{1}{y} -  \frac{1}{x}  }  =  {a}^{ \frac{1}{z} }

: \implies {a}^{ \frac{2}{y} -  \frac{1}{x}  }  =  {a}^{ \frac{1}{z} }

 : \implies\frac{2}{y}  -  \frac{1}{x}  =  \frac{1}{z}  \\

: \implies \frac{2}{y}  =  \frac{1}{x}  +  \frac{1}{z}  \\

 : \implies\frac{2}{y}  =  \frac{x + z}{xz}  \\

: \implies \: y =  \frac{2xz}{x + z}  \\

Similar questions