please give me correct answer SIMPLIFY
Answers
Question:-
Simplify the following:-
(7 + 3√5)/(3 + √5) – (7 - 3√5)/(3 - √5)
Solution:-
Let us solve the parts one by one.
For Left part:-
=
By Rationalizing the denominator:-
=
=
We know,
- (a + b)(a - b) = a² - b²
=
=
=
=
=
For Left part:-
Rationalising the denominator,
=
=
We know,
- (a + b)(a - b) = a² - b²
=
=
=
=
=
Therefore,
And,
Hence,
The value of is as follows:-
=
=
=
=
= √5
∴ The answer is √5.
________________________________
Answer:
Question:-
Simplify the following:-
(7 + 3√5)/(3 + √5) – (7 - 3√5)/(3 - √5)
Solution:-
\sf{\dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}}}
3+
5
7+3
5
−
3−
5
7−3
5
Let us solve the parts one by one.
For Left part:-
= \sf{\dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}}}
3+
5
7+3
5
By Rationalizing the denominator:-
= \sf{\dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} \times \dfrac{3 - \sqrt{5}}{3 - \sqrt{3}}}
3+
5
7+3
5
×
3−
3
3−
5
= \sf{\dfrac{(7 + 3\sqrt{5})(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})}}
(3+
5
)(3−
5
)
(7+3
5
)(3−
5
)
We know,
(a + b)(a - b) = a² - b²
= \sf{\dfrac{7(3 - \sqrt{5}) + 3\sqrt{5}(3 - \sqrt{5})}{(3)^2 - (\sqrt{5})^2}}
(3)
2
−(
5
)
2
7(3−
5
)+3
5
(3−
5
)
= \sf{\dfrac{21 - 7\sqrt{5} + 9\sqrt{5} - 15}{9 - 5}}
9−5
21−7
5
+9
5
−15
= \sf{\dfrac{6 + 2\sqrt{5}}{4}}
4
6+2
5
= \sf{\dfrac{2(3 + \sqrt{5}}{4}}
4
2(3+
5
= \sf{\dfrac{3 + \sqrt{5}}{2}}
2
3+
5
For Left part:-
\sf{\dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}}}
3−
5
7−3
5
Rationalising the denominator,
= \sf{\dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} \times \dfrac{3 + \sqrt{5}}{3 + \sqrt{3}}}
3−
5
7−3
5
×
3+
3
3+
5
= \sf{\dfrac{(7 - 3\sqrt{5})( 3 + \sqrt{5})}{(3 - \sqrt{5})(3 + \sqrt{5})}}
(3−
5
)(3+
5
)
(7−3
5
)(3+
5
)
We know,
(a + b)(a - b) = a² - b²
= \sf{\dfrac{7(3 + \sqrt{5}) - 3\sqrt{5}(3 + \sqrt{5})}{(3)^2 - (\sqrt{5})^2}}
(3)
2
−(
5
)
2
7(3+
5
)−3
5
(3+
5
)
= \sf{\dfrac{21 + 7\sqrt{5} - 9\sqrt{5} - 15}{9 - 5}}
9−5
21+7
5
−9
5
−15
= \sf{\dfrac{6 - 2\sqrt{5}}{4}}
4
6−2
5
= \sf{\dfrac{2(3 - \sqrt{5}}{4}}
4
2(3−
5
= \sf{\dfrac{3 - \sqrt{5}}{2}}
2
3−
5
Therefore,
\sf{\dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} = \dfrac{3 + \sqrt{5}}{2}}
3+
5
7+3
5
=
2
3+
5
And,
\sf{\dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} = \dfrac{3 - \sqrt{5}}{2}}
3−
5
7−3
5
=
2
3−
5
Hence,
The value of \sf{\dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}}}
3+
5
7+3
5
−
3−
5
7−3
5
is as follows:-
= \sf{\dfrac{3 + \sqrt{5}}{2} - \dfrac{3 - \sqrt{5}}{2}}
2
3+
5
−
2
3−
5
= \sf{\dfrac{3 + \sqrt{5} - (3 - \sqrt{5})}{2}}
2
3+
5
−(3−
5
)
= \sf{\dfrac{3 + \sqrt{5} - 3 + \sqrt{5}}{2}}
2
3+
5
−3+
5
= \sf{\dfrac{2\sqrt{5}}{2}}
2
2
5
= √5
∴ The answer is √5.
________________________________