Math, asked by anisha147, 5 hours ago

please give me correct solution​

Attachments:

Answers

Answered by shrirampawar249
1

Answer:

 \frac{ \sec( \alpha )  -  \tan( \alpha ) }{ \sec( \alpha  ) +  \tan( \alpha )  }  \\  =  \frac{ \sec( \alpha ) -  \tan( \alpha )  }{ \sec( \alpha ) +  \tan( \alpha )  }  \times  \frac{ \sec( \alpha )  -  \tan( \alpha ) }{ \sec( \alpha )  -  \tan( \alpha ) }  \\  =  { (\sec( \alpha )  -  \tan( \alpha )) }^{2}  \div  { \sec( \alpha ) }^{2}  -  { \tan( \alpha  ) }^{2}  \\  =  \frac{ { \sec( \alpha ) }^{2}  +  { \tan( \alpha ) }^{2} - 2 \sec( \alpha  \tan( \alpha ) )  }{1}  \\  = 1 +  { \tan( \alpha ) }^{2}  +  { \tan( \alpha ) }^{2}  - 2 \tan( \alpha  \sec( \alpha ) )  \\  = 1 + 2 { \tan( \alpha ) }^{2}  - 2 \tan( \alpha  \sec( \alpha ) )

Similar questions