Math, asked by ss9113216gmailcom, 1 month ago

please give me full solve answe​

Attachments:

Answers

Answered by VelvetBlush
1

\sf\red{We\:have,PQ||RS\:Produce \: PQ \: to\:M}

\sf\pink{\angle{CQP}=\angle{MQD}(Vertically\:opp.\:to\:\angle{S}}

\sf\pink{\therefore 60°=\angle{1}+25°}

\sf\pink{\angle{1}=35°}

\sf\red{Now,QM||RS\:and\:QR\:cuts\:CD\:and\:AB}

\sf\pink{\angle{ARQ}=\angle{RQD}=25°(Alt,\angle{S}}

\sf\pink{\therefore \angle{1}+(\angle{ARQ}+\angle{RMP}=180°}

\sf\pink{\angle{1}+(\angle{ARQ}+\angle{ARS}=180°}

\sf\pink{35°+(25°+\angle{ARS}=180°}

\sf\pink{\angle{ARS}=180°-60°=120°}

\sf\pink{\therefore \angle{QRS}=\angle{ARQ}+\angle{ARS}}

\sf\pink{25°+120°=145°}

Answered by virudhaka1988
0

Answer:

20°+125°=145°

Step-by-step explanation:

see attachment for detailed answer

Attachments:
Similar questions