Math, asked by khushbu87535, 8 months ago

please give me right answers with full method
please urgently​

Attachments:

Answers

Answered by kaushik05
3

To simplify :

 \star \:  { \tan}^{ - 1}  \frac{1}{ \sqrt{ {x}^{2} - 1 } }  \:  \:  \:  \\

Here ,

 let \: x =  \sec \theta \: \\ or \: \ \\  \theta =  { \sec}^{ - 1} x

 \implies \:  { \tan}^{ - 1} ( \frac{1}{ \sqrt{ { \sec}^{2} \theta - 1 } } ) \\  \\  \implies \:  { \tan}^{ - 1} ( \frac{1}{ \sqrt{  { \tan}^{2} \theta } } ) \\  \\  \implies \:  { \tan}^{ - 1} ( \frac{1}{ \tan \theta} ) \\  \\  \implies \:  { \tan}^{ - 1} ( \cot \theta) \\  \\  \implies \: { \tan}^{ - 1} ( \tan( \frac{\pi}{2}  -  \theta)) \\  \\  \implies \:  \frac{\pi}{2}  -  \theta \\  \\  \implies \:  \frac{\pi}{2}  -  { \sec}^{ - 1} x

Formula used :

 \star  \boxed{\bold{   { \sec }^{2}  \theta -  { \tan}^{2}  \theta = 1}} \\  \\  \star  \boxed{\bold{  \frac{1}{ \tan( \alpha ) }  =  \cot( \alpha ) }} \\  \\  \star \boxed{ \bold{  \tan( \frac{\pi}{2}  -  \alpha ) =   \cot \alpha }} \\  \\  \star \boxed{ \bold{ { \cot}^{ - 1} ( \cot \theta) =  \theta}}

Answered by parry8016
6

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions