Math, asked by khushbu87535, 6 months ago

please give me right answers with full method please. urgently​

Attachments:

Answers

Answered by kaushik05
2

To simplify :

 \star \:  { \tan}^{ - 1} ( \frac{3 {a}^{2}x -  {x}^{3}  }{ {a}^{3}  - 3a {x}^{2} } ) \\

Here ,

 \star \: let \: x = a \tan \theta \\  \\  \implies \:  \frac{x}{a}  =  \tan \theta \:  \\  \\  \implies \theta =  { \tan}^{ - 1} ( \frac{x}{a} )

 \implies \:  { \tan}^{ - 1} ( \frac{3 {a}^{2} (a \tan \theta) - ( { a \tan \theta)}^{3} }{ {a}^{3} \:  - 3a { (a \tan \theta)}^{2} } ) \\  \\  \implies \:  { \tan}^{ - 1} ( \frac{  \cancel{{a}^{3}}(3 \tan \theta -  { \tan}^{3}   \theta)}{ \cancel{ {a}^{3}}(1 - 3 { \tan}^{2}  \theta \: ) } ) \\  \\  \implies \:  { \tan}^{ - 1} ( \tan3 \theta) \\  \\  \implies \:  \: 3 \theta \\  \\  \implies \: 3 { \tan}^{ - 1} ( \frac{x}{a} )

Formula used:

 \star \boxed{ \red{ \bold{ \tan \: 3 \theta =  \frac{3 \tan \theta -  { \tan}^{3} \theta }{1 - 3 { \tan}^{2} \theta } }}} \\  \\  \\  \star \boxed{ \bold{  \blue{{ \tan}^{ - 1} ( \tan \theta) =  \theta}}}

Answered by parry8016
6

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions