Math, asked by souryendreekoley, 2 months ago

please give me right solution​

Attachments:

Answers

Answered by SparklingThunder
2

Answer:

 Let \: p(x) = {x}^{2}  - (p +  \frac{1}{p} )x + 1 \\ p(x) = 0 \\    {x}^{2}  -  (\frac{ {p}^{2} + 1 }{p})x + 1  = 0 \\  {x}^{2}  - ( \frac{ {p}^{2}x + x }{p} ) + 1 = 0 \\ Multiply \: both \: sides \: by \: p \\ p({x}^{2}  - ( \frac{ {p}^{2}x + x }{p} ) + 1) = p(0 ) \\ p {x}^{2}  -  \cancel p ( \frac{ {p}^{2}x + x }{ \cancel p} )  + p = 0 \\ p {x}^{2}  - ( {p}^{2} x + x) + p = 0 \\ p {x}^{2} -  {p}^{2}x - x + p = 0 \\ px(x - p)  -  1(x - p) = 0 \\ (px - 1)(x - p) = 0 \\ px - 1 = 0 \: ,x - p = 0 \\ px = 1,x = p \\  \boxed{x =  \frac{1}{p}} , \boxed{x = p}

Mark my answer as Brainliest.

Answered by Anonymous
2

Answer:

 Let \: p(x) = {x}^{2}  - (p +  \frac{1}{p} )x + 1 \\ p(x) = 0 \\    {x}^{2}  -  (\frac{ {p}^{2} + 1 }{p})x + 1  = 0 \\  {x}^{2}  - ( \frac{ {p}^{2}x + x }{p} ) + 1 = 0 \\ Multiply \: both \: sides \: by \: p \\ p({x}^{2}  - ( \frac{ {p}^{2}x + x }{p} ) + 1) = p(0 ) \\ p {x}^{2}  -  \cancel p ( \frac{ {p}^{2}x + x }{ \cancel p} )  + p = 0 \\ p {x}^{2}  - ( {p}^{2} x + x) + p = 0 \\ p {x}^{2} -  {p}^{2}x - x + p = 0 \\ px(x - p)  -  1(x - p) = 0 \\ (px - 1)(x - p) = 0 \\ px - 1 = 0 \: ,x - p = 0 \\ px = 1,x = p \\  \boxed{x =  \frac{1}{p}} , \boxed{x = p}

Mark my above answer as Brainliest.

Similar questions