Math, asked by Nayansiniketa, 10 months ago

please give me right solution ... please . faster plzz ...​

Attachments:

Answers

Answered by 007Boy
2

Answer:

Here is your solution.. Thanks

Attachments:
Answered by Anonymous
2

Solution

 \frac{{a}^{ - 1} }{ {a}^{ - 1} +  {b}^{ - 1}  }   +  \frac{ {a}^{ - 1} }{ {a}^{ - 1} -  {b}^{ - 1}  }  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }

LHS

  = \frac{{a}^{ - 1} }{ {a}^{ - 1} +  {b}^{ - 1}  }   +  \frac{ {a}^{ - 1} }{ {a}^{ - 1} -  {b}^{ - 1}  }  \:

We can write

 {x}^{ - 1}

as -

 {x}^{ - 1}  =  \frac{1}{x}

So,

 =  \frac{ \frac{1}{a} }{ \frac{1}{a} +  \frac{1}{b}  }  +  \frac{ \frac{1}{a} }{ \frac{1}{a} -  \frac{1}{b}  }

  = \frac{ \frac{1}{a} }{ \frac{a + b}{ab} }  +  \frac{ \frac{1}{a} }{ \frac{b - a}{ab} }

 =  \frac{1}{a}  \times  \frac{ab}{a + b}  +  \frac{1}{a}  \times  \frac{ab}{b - a}

=  \frac{b}{b  + a}   +   \frac{b}{b  -  a}

 =  \frac{b(a + b)  -  b(a - b)}{(b+a)(b-a)}

 =  \frac{ab +  {b}^{2}  -   ab   +   {b}^{2}   }{ {b}^{2}   -  {a}^{2}  }

\boxed{\red{ =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }}}

RHS

Hence Proved !!

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions