Math, asked by hamidraza0785, 5 hours ago

please give me solution of this​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\displaystyle\int\dfrac{x^{e-1}+e^{x-1}}{x^{e}+e^{x}}\,dx

\displaystyle=\int\dfrac{x^{e-1}+\dfrac{e^{x}}{e}}{x^{e}+e^{x}}\,dx

\displaystyle=\int\dfrac{\dfrac{e\,x^{x-1}+e^{x}}{e}}{x^{e}+e^{x}}\,dx

\displaystyle=\dfrac{1}{e}\int\dfrac{e\,x^{x-1}+e^{x}}{x^{e}+e^{x}}\,dx

\bf{Put\,\,\,\,x^{e}+e^{x}=t}

\bf{\implies\,\left(e\,x^{e-1}+e^{x}\right)dx=dt}

\displaystyle=\dfrac{1}{e}\int\dfrac{dt}{t}

\displaystyle=\dfrac{1}{e}\,\ln|t|+C

\displaystyle=\dfrac{1}{e}\,\ln|x^e+e^x|+C

Answered by mathdude500
4

Given Question

Evaluate the following

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {x}^{e - 1}  +  {e}^{x - 1} }{ {x}^{e}  +  {e}^{x} } \: dx

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {x}^{e - 1}  +  {e}^{x - 1} }{ {x}^{e}  +  {e}^{x} } \: dx

To evaluate this integral, we use Method of Substitution.

So, Substitute

\rm :\longmapsto\: {x}^{e} +  {e}^{x} = y

\rm :\longmapsto\: \dfrac{d}{dx}({x}^{e} +  {e}^{x}) = \dfrac{d}{dx}y

\rm :\longmapsto\: {ex}^{e - 1} +  {e}^{x} = \dfrac{dy}{dx}

\rm :\longmapsto\:e( {x}^{e - 1} +  {e}^{x - 1}) = \dfrac{dy}{dx}

\rm :\longmapsto\:({x}^{e - 1} +  {e}^{x - 1})dx = \dfrac{dy}{e}

So, on substituting all these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{dy}{e \: y}

\rm \:  =  \:\dfrac{1}{e}  \displaystyle\int\rm  \frac{dy}{ y}

\rm \:  =  \:\dfrac{1}{e}log |y|  + c

\rm \:  =  \:\dfrac{1}{e}log \bigg| {x}^{e} +  {e}^{x}  \bigg|  + c

Hence,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  \frac{ {x}^{e - 1}  +  {e}^{x - 1} }{ {x}^{e}  +  {e}^{x} } \: dx =  \frac{1}{e}log \bigg| {x}^{e}  +  {e}^{x}\bigg|  + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions