Math, asked by abhijeetvshkrma, 5 months ago

Please give me solution of this integral.

Answer should be log(x²+1)+1/x²+1 + C

Don't write fake answers...​

Attachments:

AryanKrishna980: haa galat hai
abhijeetvshkrma: ha sahi kar
abhijeetvshkrma: khud karna hota to brainly par post karta Mai??
abhijeetvshkrma: digit change karke par hi nahi ho raha hai
AryanKrishna980: haa yrr u kaha se aa gaya
abhijeetvshkrma: ok

Answers

Answered by Anonymous
39

Hope this'll help you.

Attachments:

abhijeetvshkrma: you did different question
Answered by Asterinn
71

 \rm \implies \displaystyle \int \rm \dfrac{2 {x}^{3} }{ {( {x}^{2} + 1) }^{2} } dx \\  \\  \\  \rm let \: \:   \: {x}^{2} + 1 = t \\  \rm \: 2x \: dx = dt \\ \\  \boxed{ {x}^{2} = t - 1 }  \\  \\  \\ \rm \implies \displaystyle \int \rm \dfrac{{x}^{2} \:  2x \: dx}{ {( {x}^{2} + 1) }^{2} }\\  \\  \\ \rm \implies \displaystyle \int \rm \dfrac{{(t - 1)} \:  dt}{ { t }^{2} }\\  \\  \\ \rm \implies \displaystyle \int \rm \dfrac{{(t )} \:  dt}{ { t }^{2} } - \displaystyle \int \rm \dfrac{{ } \:  dt}{ { t }^{2}}\\  \\  \\ \rm \implies \displaystyle \int \rm \dfrac{  dt}{ { t } } - \displaystyle \int \rm \dfrac{  \:  dt}{ { t }^{2}}\\  \\  \\ \rm \implies \displaystyle \rm log \: t \rm  - \displaystyle \int \rm { t }^{ - 2}dt\\  \\  \\ \rm \implies \displaystyle \rm log \: t \rm  - ( \rm { t }^{ - 2 + 1} \times  \frac{1}{ - 2 + 1} ) + c\\  \\  \\ \rm \implies \displaystyle \rm log \: t \rm  - ( \rm { t }^{ - 2 + 1} \times  \frac{1}{ - 1} ) + c\\  \\  \\ \rm \implies \displaystyle \rm log \: t \rm  \:   +  \:  \rm { t }^{ - 1}  + c \\  \\  \\ \rm \implies \displaystyle \rm log \: t \rm  \:   +   \dfrac{1}{t}   + c\\  \\  \\ \rm \implies \displaystyle \rm log \: ( {x}^{2} + 1) \rm  \:   +   \dfrac{1}{( {x}^{2} + 1) }   + c


RockingStarPratheek: Awesome :)
abhijeetvshkrma: amazing presentation thankyou so much :)
neha032020: Stop it now! There are many comments now..
abhijeetvshkrma: so what's the problem?
assingh: Nice answer!
Anonymous: Perfect :)
Anonymous: Amazing ❤
Similar questions