Math, asked by jayshripatel711205, 1 month ago

please give me step by step answer!​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:  {\bigg(81\bigg) }^{\dfrac{1}{ log_{5}(3) } } +  {\bigg(27\bigg) }^{ log_{9}(36) }  +  {\bigg(3\bigg) }^{\dfrac{4}{ log_{7}(9) } }

Consider,

\rm :\longmapsto\: {\bigg(81\bigg) }^{\dfrac{1}{ log_{5}(3) } }

We know,

\boxed{ \sf{  log_{x}(y) \: =  \:  \frac{1}{ log_{y}(x) }  }}

So,

\:  \: \rm= \:  \: {\bigg(81\bigg) }^{ log_{3}(5)  }

\:  \: \rm= \:  \: {\bigg( {3}^{4} \bigg) }^{ log_{3}(5)  }

\:  \: \rm= \:  \: {\bigg( {3}\bigg) }^{ 4 \: log_{3}(5)  }

\:  \: \rm= \:  \: {\bigg( {3}\bigg) }^{ \: log_{3}( {5}^{4} )  }

\:  \: \rm= \:  \: {5}^{4}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\:  {a}^{ log_{a}(x) } = x }}

\:  \: \rm= \:  \:625

\bf\implies \: {\bigg(81\bigg) }^{\dfrac{1}{ log_{5}(3) } } = 625 -  - (1)

Consider,

\rm :\longmapsto\:  {\bigg(27\bigg) }^{ log_{9}(36) }

\:  \: \rm= \:  \:\:  {\bigg(27\bigg) }^{ log_{ {3}^{2} }( {6}^{2} ) }

\:  \: \rm= \:  \:\:  {\bigg(27\bigg) }^{ log_{3}(6) }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\: log_{ {x}^{y} }( {x}^{q} ) =  \frac{q}{y} }}

\:  \: \rm= \:  \:\:  {\bigg( {3}^{3} \bigg) }^{ log_{3}(6) }

\:  \: \rm= \:  \:\:  {\bigg( {3}\bigg) }^{3 \:  log_{3}(6) }

\:  \: \rm= \:  \:\:  {\bigg( {3}\bigg) }^{ log_{3}( {6}^{3} ) }

\:  \: \rm= \:  \: {6}^{3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\:  {a}^{ log_{a}(x) } = x }}

\:  \: \rm= \:  \:216

\bf\implies \:{\bigg(27\bigg) }^{ log_{9}(36) }   = 216 -  - (2)

Consider,

\rm :\longmapsto\:   {\bigg(3\bigg) }^{\dfrac{4}{ log_{7}(9) } }

We know,

\boxed{ \sf{  log_{x}(y) \: =  \:  \frac{1}{ log_{y}(x) }  }}

\:  \: \rm= \:  \: {\bigg(3\bigg) }^{4 log_{9}(7)}

\:  \: \rm= \:  \: {\bigg(3\bigg) }^{4 log_{ {3}^{2} }(7)}

\:  \: \rm= \:  \: {\bigg(3\bigg) }^{4 \:  \times   \: \dfrac{1}{2}  \:  log_{ {3}}(7)}

\:  \: \rm= \:  \: {\bigg(3\bigg) }^{2 \:  log_{ {3}}(7)}

\:  \: \rm= \:  \: {\bigg(3\bigg) }^{ log_{ {3}}( {7}^{2} )}

\:  \: \rm= \:  \: {7}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\:  {a}^{ log_{a}(x) } = x }}

\:  \: \rm= \:  \:49

\bf\implies \: {\bigg(3\bigg) }^{\dfrac{4}{ log_{7}(9) } } = 49 -  -  - (3)

Hence,

\rm :\longmapsto\:  {\bigg(81\bigg) }^{\dfrac{1}{ log_{5}(3) } } +  {\bigg(27\bigg) }^{ log_{9}(36) }  +  {\bigg(3\bigg) }^{\dfrac{4}{ log_{7}(9) } }

\:  \: \rm= \:  \:625 + 216 + 49

\:  \: \rm= \:  \:890

Additional Information :-

\boxed{ \sf{logxy \:  =  \: logx \: +   \: logy}}

\boxed{ \sf{log \frac{x}{y}  \:  =  \: logx \:  -    \: logy}}

\boxed{ \sf{  log( {x}^{y} ) \:  =  \: y \: logx}}

\boxed{ \sf{ log_{x}(y)  \: =  \:  \frac{logy}{logx}  }}

Similar questions