Biology, asked by vivekbt42kvboy, 3 months ago

Please give me the ans fast
no spam plx​

Attachments:

Answers

Answered by Anonymous
66

To prove:

\longrightarrow \bf (cot \theta - cosec \theta)^2 = \dfrac {1 - cos \theta}{1 + cos \theta}

Solution:

\sf (cot \theta - cosec \theta)^2 = \dfrac {1 - cos \theta}{1 + cos \theta}

 \\

\bf LHS = (cot \theta  - cosec \theta)^2

 \\

\longrightarrow \sf cot^2 \theta - 2 cot \theta \ cosec \theta + cosec^2 \theta

 \\

\longrightarrow \sf \dfrac {cos^2 \theta}{sin^2 \theta} - 2 \bigg( \dfrac{cos \theta}{sin \theta}\bigg) \bigg( \dfrac {1}{sin \theta} \bigg) + \dfrac {1}{sin^2 \theta}

 \\

\longrightarrow \sf \dfrac {cos^2 \theta}{sin^2 \theta} - 2 \dfrac {cos \theta}{sin^2 \theta} + \dfrac {1}{sin^2 \theta}

 \\

\longrightarrow \sf \dfrac {(cos^2 \theta - 2cos \theta + 1)}{sin^2 \theta}

 \\

\longrightarrow \sf \dfrac {(1 - cos \theta)^2}{1 - cos^2 \theta)}

 \\

\longrightarrow \sf \dfrac {(1 - cos \theta)^2}{(1 + cos \theta)(1 - cos \theta)}

 \\

\longrightarrow \bf \dfrac {1 - cos \theta}{1 + cos \theta}

 \\

\bf = RHS

 \\

\large \therefore \bf Hence \ Proved.

Answered by adhikaryarchana
4

Answer:

Hope it helps you.

Please mark me as brainliest.

Attachments:
Similar questions